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Preface

Design patterns and object-oriented programming. They hold such

promise to make your life as a software designer and developer eas-

ier. Their terminology is bandied about every day in the technical

and even the popular press. But it can be hard to learn them, to

become proficient with them, to understand what is really going on. 

Perhaps you have been using an object-oriented or object-based

language for years. Have you learned that the true power of objects

is not inheritance but is in “encapsulating behaviors”? Perhaps you

are curious about design patterns and have found the literature a

bit too esoteric and high-falutin. If so, this book is for you. 

It is based on years of teaching this material to software developers,

both experienced and new to object orientation. It is based upon

the belief—and our experience—that once you understand the

basic principles and motivations that underlie these concepts, why

they are doing what they do, your learning curve will be incredibly

shorter. And in our discussion of design patterns, you will under-

stand the true mindset of object orientation, which is a necessity

before you can become proficient. 

As you read this book, you will gain a solid understanding of the

ten most essential design patterns. You will learn that design pat-

terns do not exist on their own, but are supposed to work in con-

cert with other design patterns to help you create more robust

applications. You will gain enough of a foundation that you will be

able to read the design pattern literature, if you want to, and possi-

bly discover patterns on your own. 

Most importantly, you will be better equipped to create flexible and

complete software that is easier to maintain.
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From Object Orientation to Patterns to 
True Object Orientation

In many ways, this book is a retelling of my personal experience

learning design patterns. Prior to studying design patterns, I consid-

ered myself to be reasonably expert in object-oriented analysis and

design. My track record had included several fairly impressive

designs and implementations in many industries. I knew C++ and

was beginning to learn Java. The objects in my code were well-

formed and tightly encapsulated. I could design excellent data

abstractions for inheritance hierarchies. I thought I knew object-

orientation. 

Now, looking back, I see that I really did not understand the full

capabilities of object-oriented design, even though I was doing

things the way the experts advised. It wasn’t until I began to learn

design patterns that my object-oriented design abilities expanded

and deepened. Knowing design patterns has made me a better

designer, even when I don’t use these patterns directly.

I began studying  design patterns in 1996. I was a C++/object-

oriented design mentor at a large aerospace company in the north-

west. Several people asked me to lead a design pattern study group.

That’s where I met my co-author, Jim Trott. In the study group,

several interesting things happened. First, I grew fascinated with

design patterns. I loved being able to compare my designs with the

designs of others who had more experience than I had. I discovered

that I was not taking full advantage of designing to interfaces and

that I didn’t always concern myself with seeing if I could have an

object use another object without knowing the used object’s type. I

noticed that beginners to object-oriented design—those who would

normally be deemed as learning design patterns too early—were

benefiting as much from the study group as the experts were. The

patterns presented examples of excellent object-oriented designs

and illustrated basic object-oriented principles, which helped to

mature their designs more quickly. By the end of the study session,

preface.fm  Page xvi  Wednesday, June 6, 2001  4:18 PM



Preface xvii

I was convinced that design patterns were the greatest thing to hap-

pen to software design since the invention of object-oriented

design. 

However, when I looked at my work at the time, I saw that I was

not incorporating any design patterns into my code. 

I just figured I didn’t know enough design patterns yet and needed

to learn more. At the time, I only knew about six of them. Then I

had what could be called an epiphany. I was working on a project

as a mentor in object-oriented design and was asked to create a

high-level design for the project. The leader of the project was

extremely sharp, but was fairly new to object-oriented design.

The problem itself wasn’t that difficult, but it required a great deal

of attention to make sure the code was going to be easy to main-

tain. Literally, after about two minutes of looking at the problem, I

had developed a design based on my normal approach of data

abstraction. Unfortunately, it was very clear this was not going to be

a good design. Data abstraction alone had failed me. I had to find

something better. 

 Two hours later, after applying every design technique I knew, I

was no better off. My design was essentially the same. What was

most frustrating was that I knew there was a better design. I just

couldn’t see it. Ironically, I also knew of four design patterns that

“lived” in my problem but I couldn’t see how to use them. Here I

was—a supposed expert in object-oriented design—baffled by a

simple problem!

Feeling very frustrated, I took a break and started walking down

the hall to clear my head, telling myself I would not think of the

problem for at least 10 minutes. Well, 30 seconds later, I was think-

ing about it again! But I had gotten an insight that changed my

view of design patterns: rather than using patterns as individual

items, I should use the design patterns together. 

preface.fm  Page xvii  Wednesday, June 6, 2001  4:18 PM



xviii Preface

Patterns are supposed to be sewn together to solve a problem.

I had heard this before, but hadn’t really understood it. Because

patterns in software have been introduced as design patterns, I had

always labored under the assumption that they had mostly to do

with design. My thoughts were that in the design world, the pat-

terns came as pretty much well-formed relationships between

classes. Then, I read Christopher Alexander’s amazing book, The

Timeless Way of Building. I learned that patterns existed at all levels—

analysis, design, and implementation. Alexander discusses using

patterns to help in the understanding of the problem domain (even

in describing it), not in creating the design after the problem

domain is understood.

My mistake had been in trying to create the classes in my problem

domain and then stitch them together to make a final system, a

process which Alexander calls a particularly bad idea. I had never

asked if I had the right classes because they just seemed so right, so

obvious; they were the classes that immediately came to mind as I

started my analysis, the “nouns” in the description of the system

that we had been taught to look for. But I had struggled trying to

piece them together. 

When I stepped back and used design patterns and Alexander’s

approach to guide me in the creation of my classes, a far superior

solution unfolded in only a matter of minutes. It was a good design

and we put it into production. I was excited—excited to have

designed a good solution and excited about the power of design

patterns. It was then that I started incorporating design patterns

into my development work and my teaching. 

I began to discover that programmers who were new to object-ori-

ented design could learn design patterns, and in doing so, develop a

basic set of object-oriented design skills. It was true for me and it

was true for the students that I was teaching. 
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Imagine my surprise! The design pattern books I had been reading

and the design pattern experts I had been talking to were saying

that you really needed to have a good grounding in object-oriented

design before embarking on a study of design patterns. Neverthe-

less, I saw, with my own eyes, that students who learned object-ori-

ented design concurrently with design patterns learned object-

oriented design faster than those just studying object-oriented

design. They even seemed to learn design patterns at almost the

same rate as experienced object-oriented practitioners.

I began to use design patterns as a basis for my teaching. I began to

call my classes Pattern Oriented Design: Design Patterns from Analysis to

Implementation.

I wanted my students to understand these patterns and began to

discover that using an exploratory approach was the best way to

foster this understanding. For instance, I found that it was better to

present the Bridge pattern by presenting a problem and then have

my students try to design a solution to the problem using a few

guiding principles and strategies that I had found were present in

most of the patterns. In their exploration, the students discovered

the solution—called the Bridge pattern—and remembered it. 

In any event, I found that these guiding principles and strategies

could be used to “derive” several of the design patterns. By “derive

a design pattern,” I mean that if I looked at a problem that I knew

could be solved by a design pattern, I could use the guiding princi-

ples and strategies to come up with the solution that is expressed in

the pattern. I made it clear to my students that we weren’t really

coming up with design patterns this way. Instead, I was just illus-

trating one possible thought process that the people who came up

with the original solutions, those that were eventually classified as

design patterns, might have used.
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My abilities to explain these few, but powerful, principles and strat-

egies improved. As they did, I found that it became more useful to

explain an increasing number of the Gang of Four patterns. In fact,

I use these principles and strategies to explain 12 of the 14 patterns

I discuss in my design patterns course.

I found that I was using these principles in my own designs both

with and without patterns. This didn’t surprise me. If using these

strategies resulted in a design equivalent to a design pattern when I

knew the pattern was present, that meant they were giving me a

way to derive excellent designs (since patterns are excellent designs

by definition). Why would I get any poorer designs from these tech-

niques just because I didn’t know the name of the pattern that

might or might not be present anyway?

These insights helped hone my training process (and now my writ-

ing process). I had already been teaching my courses on several lev-

els. I was teaching the fundamentals of object-oriented analysis and

design. I did that by teaching design patterns and using them to

A slight digression. 

The guiding principles and strategies seem very clear to me now.

Certainly, they are stated in the “Gang of Four’s” design patterns

book. But I it took me a long time to understand them because of

limitations in my own understanding of the object-oriented para-

digm. It was only after integrating in my own mind the work of

the Gang of Four with Alexander’s work, Jim Coplien’s work on

commonality and variability analysis, and Martin Fowler’s work

in methodologies and analysis patterns that these principles

became clear enough to me to that I was able to talk about them

to others. It helped that I was making my livelihood explaining

things to others so I couldn’t get away with making assumptions

as easily as I could when I was just doing things for myself.
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illustrate good examples of object-oriented analysis and design. In

addition, by using the patterns to teach the concepts of object orien-

tation, my students were also better able to understand the princi-

ples of object orientation. And by teaching the guiding principles

and strategies, my students were able to create designs of compara-

ble quality to the patterns themselves.

I relate this story because this book follows much the same pattern

as my course (pun intended). In fact, from Chapter 3 on, this book

is very much the first day of my two-day course: Pattern Oriented

Design: Design Patterns from Analysis to Implementation. 

As you read this book, you will learn the patterns. But even more

importantly, you will learn why they work and how they can work

together, and the principles and strategies upon which they rely. It

will be useful to draw on your own experiences. When I present a

problem in the text, it is helpful if you imagine a similar problem

that you have come across. This book isn’t about new bits of infor-

mation or new patterns to apply, but rather a new way of looking at

object-oriented software development. I hope that your own expe-

riences, connected with the principles of design patterns, will prove

to be a powerful ally in your learning.

Alan Shalloway

December, 2000

From Artificial Intelligence to Patterns to 
True Object Orientation

My journey into design patterns had a different starting point than

Alan’s but we have reached the same conclusions: 

• Pattern-based analyses make you a more effective and efficient

analyst because they let you deal with your models more
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abstractly and because they represent the collected experiences

of many other analysts. 

• Patterns help people to learn principles of object orientation.

The patterns help to explain why we do what we do with

objects. 

I started my career in artificial intelligence (AI) creating rule-based

expert systems. This involves listening to experts and creating mod-

els of their decision-making processes and then coding these models

into rules in a knowledge-based system. As I built these systems, I

began to see repeating themes: in common types of problems,

experts tended to work in similar ways. For example, experts who

diagnose problems with equipment tend to look for simple, quick

fixes first, then they get more systematic, breaking the problem into

component parts; but in their systematic diagnosis, they tend to try

first inexpensive tests or tests that will eliminate broad classes of

problems before other kinds of tests. This was true whether we

were diagnosing problems in a computer or a piece of oil field

equipment. 

Today, I would call these recurring themes patterns.  Intuitively, I

began to look for these recurring themes as I was designing new

expert systems. My mind was open and friendly to the idea of pat-

terns, even though I did not know what they were. 

Then, in 1994, I discovered that researchers in Europe had codified

these patterns of expert behavior and put them into a package that

they called Knowledge Analysis and Design Support, or KADS.

Dr. Karen Gardner, a most gifted analyst, modeler, mentor, and

human being, began to apply KADS to her work in the United

States. She extended the Europeans  work to apply KADS to object-

oriented systems. She opened my eyes to an entire world of pat-

tern-based analysis and design that was forming in the software

world, in large part due to Christopher Alexander s work. Her book,

Cognitive Patterns (Cambridge University Press, 1998) describes this

work. 
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Suddenly, I had a structure for modeling expert behaviors without

getting trapped by the complexities and exceptions too early. I was

able to complete my next three projects in less time, with less

rework, and with greater satisfaction by end-users, because:  

• Ι could design models more quickly because the patterns pre-

dicted for me what ought to be there. They told me what the

essential objects were and what to pay special attention to.

• Ι was able to communicate much more effectively with experts

because we had a more structured way to deal with the details

and exceptions. 

• Τhe patterns allowed me to develop better end-user training for

my system because the patterns predicted the most important

features of the system. 

This last point is significant. Patterns help end-users understand

systems because they provide the context for the system, why we

are doing things in a certain way. We can use patterns to describe

the guiding principles and strategies of the system. And we can use

patterns to develop the best examples to help end-users understand

the system. 

I was hooked.

So, when a design patterns study group started at my place of

employment, I was eager to go. This is where I met Alan who had

reached a similar point in his work as an object-oriented designer

and mentor. The result is this book. 

I hope that the principles in this book help you in your own jour-

ney to become a more effective and efficient analyst.

James Trott

December, 2000
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A Note About Conventions 
Used in This Book

In the writing of this book, we had to make several choices about

style and convention. Some of our choices have surprised our read-

ers. So, it is worth a few comments about why we have chosen to

do what we have done. 

Approach Rationale

First person voice This book is a collaborative effort between two authors. We debated and 
refined our ideas to find the best ways to explain these concepts. Alan 
tried them out in his courses and we refined some more. We chose to use 

the first person singular in the body of this book because it allows us to tell 
the story in what we hope is a more engaging and natural style.

Scanning text We have tried to make this book easy to scan so that you can get the main 
points even if you do not read the body, or so that you can quickly find the 
information you need. We make significant use of tables and bulleted lists. 

We provide text in the outside margin that summarizes paragraphs. With 
the discussion of each pattern, we provide a summary table of the key 
features of the pattern. Our hope is that these will make the book that 

much more accessible. 

Code fragments This book is about analysis and design more than implementation. Our 

intent is to help you think about crafting good designs based on the 
insights and best practices of the object-oriented community, as 
expressed in design patterns. One of the challenges for all of us program-

mers is to avoid going to the implementation too early, doing before think-
ing. Knowing this, we have purposefully tried to stay away from too much 
discussion on implementation. Our code examples may seem a bit light-

weight  and fragmentary. Specifically, we never provide error checking in 
the code. This is because we are trying to use the code to illustrate 
concepts. 

Strategies and 
principles

Ours is an introductory book. It will help you be able to get up to speed 
quickly with design patterns. You will understand the principles and strate-

gies that motivate design patterns. After reading this book, you can go on 
to a more scholarly or reference book. The last chapter will point you to 
many of the references that we have found useful. 
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Feedback

Design patterns are a work in progress, a conversation amongst

practitioners who discover best practices, who discover fundamen-

tal principles in object orientation.

We covet your feedback on this book:

• What did we do well or poorly?

• Are there errors that need to be corrected?

• Was there something that was confusingly written?

Please visit us at the Web site for this book. The URL is http://

www.netobjectives.com/dpexplained. At this site, you will find a form

that you can use to send us your comments and questions. You will

also find our latest research.

Show breadth and 

give a taste

We are trying give you a taste for design patterns, to expose you to the 

breadth of the pattern world but not go into depth in any of them (see the 
previous point). 

Our thought was this: If you brought someone to the USA for a two week 
visit, what would you show them? Maybe a few sites to help them get 
familiar with architectures, communities, the feel of cities and the vast 

spaces that separate them, freeways, and coffee shops. But you would 
not be able to show them everything. To fill in their knowledge, you might 
choose to show them slide shows of many other sites and cities to give 

them a taste of the country. Then, they could make plans for future visits.  
We are showing you the major sites in design patterns and then giving 
you tastes of other areas so that you can plan your own journey into 

patterns.
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CHAPTER 1

The Object-Oriented 
Paradigm

Overview 

In this chapterThis chapter introduces you to the object-oriented paradigm by

comparing and contrasting it with something familiar: standard

structured programming. 

The object-oriented paradigm grew out of a need to meet the chal-

lenges of past practices using standard structured programming. By

being clear about these challenges, we can better see the advan-

tages of object-oriented programming, as well as gain a better

understanding of this mechanism.

This chapter will not make you an expert on object-oriented meth-

ods. It will not even introduce you to all of the basic object-oriented

concepts. It will, however, prepare you for the rest of this book,

which will explain the proper use of object-oriented design meth-

ods as practiced by the experts.

In this chapter,

• I discuss a common method of analysis, called functional

decomposition.

• I address the problem of requirements and the need to deal

with change (the scourge of programming!).

• I describe the object-oriented paradigm and show its use in

action.
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• I point out special object methods.

• I provide a table of important object terminology used in this

chapter on page 21.

Before The Object-Oriented Paradigm:  
Functional Decomposition 

Functional decompo-

sition is a natural 

way to deal with 

complexity

Let’s start out by examining a common approach to software devel-

opment. If I were to give you the task of writing code to access a

description of shapes that were stored in a database and then dis-

play them, it would be natural to think in terms of the steps

required. For example, you might think that you would solve the

problem by doing the following:

1. Locate the list of shapes in the database.

2. Open up the list of shapes.

3. Sort the list according to some rules.

4. Display the individual shapes on the monitor.

You could take any one of these steps and further break down the

steps required to implement it. For example, you could break down

Step 4 as follows:

For each shape in the list, do the following:

4a. Identify type of shape.

4b. Get location of shape.

4c. Call appropriate function that will display shape, giving it the

shape’s location.

This is called functional decomposition because the analyst breaks

down (decomposes) the problem into the functional steps that

compose it. You and I do this because it is easier to deal with

smaller pieces than it is to deal with the problem in its entirety. It is

the same approach I might use to write a recipe for making lasagna,
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or instructions to assemble a bicycle. We use this approach so often

and so naturally that we seldom question it or ask if there are other

alternatives.

The challenge with 

this approach: 

dealing with change 

The problem with functional decomposition is that it does not help

us prepare the code for possible changes in the future, for a graceful

evolution. When change is required, it is often because I want to

add a new variation to an existing theme. For example, I might

have to deal with new shapes or new ways to display shapes. If I

have put all of the logic that implements the steps into one large

function or module, then virtually any change to the steps will

require changes to that function or module. 

And change creates opportunities for mistakes and unintended con-

sequences. Or, as I like to say, 

Many bugs originate with changes to code.

Verify this assertion for yourself. Think of a time when you wanted

to make a change to your code, but were afraid to put it in because

you knew that modifying the code in one place could break it

somewhere else. Why might this happen? Must the code pay atten-

tion to all of its functions and how they might be used? How might

the functions interact with one another? Were there too many

details for the function to pay attention to, such as the logic it was

trying to implement, the things with which it was interacting, the

data it was using? As it is with people, trying to focus on too many

things at once begs for errors when anything changes.

And no matter how hard you try, no matter how well you do your

analysis, you can never get all of the requirements from the user.

Too much is unknown about the future. Things change. They

always do . . . 

And nothing you can do will stop change. But you do not have

to be overcome by it. 
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The Problem of Requirements

Requirements 

always change

Ask software developers what they know to be true about the

requirements they get from users. They will often say: 

• Requirements are incomplete.

• Requirements are usually wrong.

• Requirements (and users) are misleading.

• Requirements do not tell the whole story.

One thing you will never hear is, “not only were our requirements

complete, clear, and understandable, but they laid out all of the

functionality we were going to need for the next five years!”

In my thirty years of experience writing software, the main thing I

have learned about requirements is that . . . 

Requirements always change.

I have also learned that most developers think this is a bad thing.

But few of them write their code to handle changing requirements

well.

Requirements change for a very simple set of reasons:

• The users’ view of their needs change as a result of their discus-

sions with developers and from seeing new possibilities for the

software.

• The developers’ view of the users’ problem domain changes as

they develop software to automate it and thus become more

familiar with it.

• The environment in which the software is being developed

changes. (Who anticipated, five years ago, Web development as

it is today?)
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This does not mean you and I can give up on gathering good

requirements. It does mean that we must write our code to accom-

modate change. It also means we should stop beating ourselves up

(or our customers, for that matter) for things that will naturally

occur.

Dealing with Changes: 
Using Functional Decomposition

Using modularity to 

contain variation

Look a little closer at the problem of displaying shapes. How can I

write the code so that it is easier to handle shifting requirements?

Rather than writing one large function, I could make it more

modular.

For example, in Step 4c on page 4, where I “Call appropriate function

that will display shape, giving it the shape’s location,” I could write a

module like that shown in Example 1-1.

Example 1-1 Using Modularity to Contain Variation

function: display shape
input: type of shape, description of shape
action: 
   switch (type of shape)
      case square: put display function for square here
      case circle: put display function for circle here

Change happens! Deal with it. 

• In all but the simplest cases, requirements will always

change, no matter how well we do the initial analysis!

• Rather than complaining about changing requirements, we

should change the development process so that we can

address change more effectively. 
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Then, when I receive a requirement to be able to display a new type

of shape—a triangle, for instance—I only need to change this mod-

ule (hopefully!).

Problems with 

modularity in a 

functional decompo-

sition approach

There are some problems with this approach, however. For exam-

ple, I said that the inputs to the module were the type of shape and

a description of the shape. Depending upon how I am storing

shapes, it may or may not be possible to have a consistent descrip-

tion of shapes that will work well for all shapes. What if the descrip-

tion of the shape is sometimes stored as an array of points? Would

that still work? 

Modularity definitely helps to make the code more understandable,

and understandability makes the code easier to maintain. But mod-

ularity does not always help code deal with all of the variation it

might encounter.

Low cohesion, tight  

coupling

With the approach that I have used so far, I find that I have two sig-

nificant problems, which go by the terms low cohesion and tight cou-

pling. In his book Code Complete, Steve McConnell gives an excellent

description of both cohesion and coupling. He says,  

• Cohesion refers to how “closely the operations in a routine are

related.”1 

I have heard other people refer to cohesion as clarity because the

more that operations are related in a routine (or a class), the easier

it is to understand things. 

• Coupling refers to “the strength of a connection between two

routines. Coupling is a complement to cohesion. Cohesion

describes how strongly the internal contents of a routine are

1. McConnell, S., Code Complete: A Practical Handbook of Software Construction, 
Redmond: Microsoft Press, 1993, p. 81. (Note: McConnell did not invent these 
terms, we just happen to like his definitions of them best.)
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related to each other. Coupling describes how strongly a rou-

tine is related to other routines. The goal is to create routines

with internal integrity (strong cohesion) and small, direct, visi-

ble, and flexible relations to other routines (loose coupling).”2

Changing a function, 

or even data used by 

a function, can 

wreak havoc on 

other functions

Most programmers have had the experience of making a change to

a function or piece of data in one area of the code that then has an

unexpected impact on other pieces of code. This type of bug is

called an “unwanted side effect.” That is because while we get the

impact we want (the change), we also get other impacts we don’t

want—bugs! What is worse, these bugs are often difficult to find

because we usually don’t notice the relationship that caused the

side effects in the first place (if we had, we wouldn’t have changed

it the way we did).

In fact, bugs of this type lead me to a rather startling observation:

We really do not spend much time fixing bugs. 

I think fixing bugs takes a short period of time in the maintenance

and debugging process. The overwhelming amount of time spent in

maintenance and debugging is on finding bugs and taking the time

to avoid unwanted side effects. The actual fix is relatively short! 

Since unwanted side effects are often the hardest bugs to find, hav-

ing a function that touches many different pieces of data makes it

more likely that a change in requirements will result in a problem. 

2. ibid, p. 87.
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Functional decompo-

sition focuses on the 

wrong thing

With functional decomposition, changing requirements causes my

software development and maintenance efforts to thrash. I am

focused primarily on the functions. Changes to one set of functions

or data impact other sets of functions and other sets of data, which

in turn impact other functions that must be changed. Like a snow-

ball that picks up snow as it rolls downhill, a focus on functions

leads to a cascade of changes from which it is difficult to escape. 

Dealing with Changing Requirements

How do people do 

things?

To figure out a way around the problem of changing requirements

and to see if there is an alternative to functional decomposition,

let’s look at how people do things. Let’s say that you were an

instructor at a conference. People in your class had another class to

attend following yours, but didn’t know where it was located. One

of your responsibilities is to make sure everyone knows how to get

to their next class. 

If you were to follow a structured programming approach, you

might do the following:

1. Get list of people in the class.

2. For each person on this list:

a. Find the next class they are taking.

b. Find the location of that class.

The devil is in the side effects. 

• A focus on functions is likely to cause side effects that are dif-

ficult to find.

• Most of the time spent in maintenance and debugging is not

spent on fixing bugs, but in finding them and seeing how to

avoid unwanted side effects from the fix.
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c. Find the way to get from your classroom to the person’s next 

class.

d. Tell the person how to get to their next class.

To do this would require the following procedures:

1. A way of getting the list of people in the class

2. A way of getting the schedule for each person in the class

3. A program that gives someone directions from your classroom

to any other classroom

4. A control program that works for each person in the class and

does the required steps for each person

Doubtful you’d 

follow this approach

I doubt that you would actually follow this approach. Instead, you

would probably post directions to go from this classroom to the

other classrooms and then tell everyone in the class, “I have posted

the locations of the classes following this in the back of the room, as

well as the locations of the other classrooms. Please use them to go

to your next classroom.” You would expect that everyone would

know what their next class was, that they could find the classroom

they were to go to from the list, and could then follow the direc-

tions for going to the classrooms themselves.

What is the difference between these approaches? 

• In the first one—giving explicit directions to everyone—you

have to pay close attention to a lot of details. No one other than

you is responsible for anything. You will go crazy!

• In the second case, you give general instructions and then

expect that each person will figure out how to do the task him-

self or herself. 

ch01.fm  Page 11  Friday, June 8, 2001  11:58 AM



12 Part I • An Introduction to Object-Oriented Software Development

Shifting responsi-

bility from yourself 

to individuals . . . 

The biggest difference is this shift of responsibility. In the first

case, you are responsible for everything; in the second case, stu-

dents are responsible for their own behavior. In both cases, the

same things must be implemented, but the organization is very

different.

What is the impact of this?

To see the effect of this reorganization of responsibilities, let’s see

what happens when some new requirements are specified. 

Suppose I am now told to give special instructions to graduate stu-

dents who are assisting at the conference. Perhaps they need to col-

lect course evaluations and take them to the conference office

before they can go to the next class. In the first case, I would have

to modify the control program to distinguish the graduate students

from the undergraduates, and then give special instructions to the

graduate students. It’s possible that I would have to modify this pro-

gram considerably.

. . . can minimize 

changes

However, in the second case—where people are responsible for

themselves—I would just have to write an additional routine for

graduate students to follow. The control program would still just

say, “Go to your next class.” Each person would simply follow the

instructions appropriate for himself or herself.

Why the difference? This is a significant difference for the control program. In one case,

it would have to be modified every time there was a new category

of students with special instructions that they might be expected to

follow. In the other one, new categories of students have to be

responsible for themselves.

What makes it 

happen?

There are three different things going on that make this happen.

They are:
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• The people are responsible for themselves, instead of the con-

trol program being responsible for them. (Note that to accom-

plish this, a person must also be aware of what type of student

he or she is.)

• The control program can talk to different types of people (grad-

uate students and regular students) as if they were exactly the

same.

• The control program does not need to know about any special

steps that students might need to take when moving from class

to class.

Different perspectivesTo fully understand the implications of this, it’s important to estab-

lish some terminology. In UML Distilled, Martin Fowler describes

three different perspectives in the software development process.3

These are described in Table 1-1.    

3. Fowler, M., Scott, K., UML Distilled: A Brief Guide to the Standard Object Modeling 
Language, 2nd Edition, Reading, Mass.: Addison-Wesley, 1999, pp. 51–52.

Table 1-1  Perspectives in the Software Development Process

Perspective Description

Conceptual This perspective “represents the concepts in the 
domain under study. . . . a conceptual model 

should be drawn with little or no regard for the 

software that might implement it . . .”

Specification “Now we are looking at software, but we are 

looking at the interfaces of the software, not the 

implementation.”

Implementation At this point we are at the code itself. “This is 

probably the most often-used perspective, but in 

many ways the specification perspective is often 
a better one to take.”
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How perspectives 

help

Look again at the previous example of “Go to your next class.”

Notice that you—as the instructor—are communicating with the

people at the conceptual level. In other words, you are telling people

what you want, not how to do it. However, the way they go to their

next class is very specific. They are following specific instructions

and in doing so are working at the implementation level. 

Communicating at one level (conceptually) while performing at

another level (implementation) results in the requestor (the

instructor) not knowing exactly what is happening, only knowing

conceptually what is happening. This can be very powerful. Let’s

see how to take these notions and write programs that take advan-

tage of them.

The Object-Oriented Paradigm

Using objects shifts 

responsibility to a 

more local level

The object-oriented paradigm is centered on the concept of the

object. Everything is focused on objects. I write code organized

around objects, not functions. 

What is an object? Objects have traditionally been defined as data

with methods (the object-oriented term for functions). Unfortunately,

this is a very limiting way of looking at objects. I will look at a better

definition of objects shortly (and again in Chapter 8, “Expanding Our

Horizons”). When I talk about the data of an object, these can be sim-

ple things like numbers and character strings, or they can be other

objects.

The advantage of using objects is that I can define things that are

responsible for themselves. (See Table 1-2.) Objects inherently

know what type they are. The data in an object allow it to know

what state it is in and the code in the object allows it to function

properly (that is, do what it is supposed to do).
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In this case, the objects were identified by looking at the entities in

the problem domain. I identified the responsibilities (or methods)

for each object by looking at what these entities need to do. This is

consistent with the technique of finding objects by looking for the

nouns in the requirements and finding methods by looking for

verbs. I find this technique to be quite limiting and will show a bet-

ter way throughout the book. For now, it is a way to get us started. 

How to think about 

objects

The best way to think about what an object is, is to think of it as

something with responsibilities. A good design rule is that objects

should be responsible for themselves and should have those

responsibilities clearly defined. This is why I say one of the respon-

sibilities of a student object is knowing how to go from one class-

room to the next.

Or, taking Fowler’s 

perspective 

I can also look at objects using the framework of Fowler’s perspec-

tives:

• At the conceptual level, an object is a set of responsibilities.4

Table 1-2  Objects and Their Responsibilities

This Object . . . Is Responsible For . . . 

Student Knowing which classroom they are in
Knowing which classroom they are to go to next

Going from one classroom to the next

Instructor Telling people to go to next classroom

Classroom Having a location

Direction giver Given two classrooms, giving directions from one 

classroom to the other

4. I am roughly paraphrasing Bertrand Meyer’s work of Design by Contract as out-
lined in Object-Oriented Software Construction, Upper Saddle River, N.J.: Prentice 
Hall, 1997, p. 331.
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• At the specification level, an object is a set of methods that can be

invoked by other objects or by itself.

• At the implementation level, an object is code and data. 

Unfortunately, object-oriented design is often taught and talked

about only at the implementation level—in terms of code and

data—rather than at the conceptual or specification level. But there

is great power in thinking about objects in these latter ways as well! 

Objects have 

interfaces for other 

objects to use

Since objects have responsibilities and objects are responsible for

themselves, there has to be a way to tell objects what to do.

Remember that objects have data to tell the object about itself and

methods to implement functionality. Many methods of an object

will be identified as callable by other objects. The collection of these

methods is called the object’s public interface.

For example, in the classroom example, I could write the Student

object with the method gotoNextClassroom(). I would not need

to pass any parameters in because each student would be responsi-

ble for itself. That is, it would know:

• What it needs to be able to move 

• How to get any additional information it needs to perform this

task

Organizing objects 

around the class

Initially, there was only one kind of student—a regular student who

goes from class to class. Note that there would be many of these

“regular students” in my classroom (my system). But what if I want

to have more kinds of students? It seems inefficient for each student

type to have its own set of methods to tell it what it can do, espe-

cially for tasks that are common to all students. 

A more efficient approach would be to have a set of methods associ-

ated with all students that each one could use or tailor to their own

ch01.fm  Page 16  Friday, June 8, 2001  11:58 AM



Chapter 1 • The Object-Oriented Paradigm 17

needs. I want to define a “general student” to contain the defini-

tions of these common methods. Then, I can have all manner of

specialized students, each of whom has to keep track of his or her

own private information. 

In object-oriented terms, this general student is called a class. A class

is a definition of the behavior of an object. It contains a complete

description of:

• The data elements the object contains

• The methods the object can do

• The way these data elements and methods can be accessed

Since the data elements an object contains can vary, each object of

the same type may have different data but will have the same func-

tionality (as defined in the methods). 

Objects are 

instances of classes

To get an object, I tell the program that I want a new object of this

type (that is, the class that the object belongs to). This new object is

called an instance of the class. Creating instances of a class is called

instantiation.

Working with objects 

in the example

Writing the “Go to the next classroom” example using an object-ori-

ented approach is much simpler. The program would look like this:

1. Start the control program.

2. Instantiate the collection of students in the classroom.

3. Tell the collection to have the students go to their next class.

4. The collection tells each student to go to their next class.

5. Each student:

a. Finds where his next class is

b. Determines how to get there
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c. Goes there

4. Done.

The need for an 

abstract type

This works fine until I  need to add another student type, such as

the graduate student. 

I have a dilemma. It appears that I must allow any type of student

into the collection (either regular or graduate student). The prob-

lem facing me is how do I want the collection to refer to its constit-

uents? Since I am talking about implementing this in code, the

collection will actually be an array or something of some type of

object. If the collection were named something like, Regular-

Students, then I would not be able to put GraduateStudents

into the collection. If I say that the collection is just a group of

objects, how can I be sure that I do not include the wrong type of

object (that is, something that doesn’t do “Go to your next class”)?

The solution is straightforward. I need a general type that encom-

passes more than one specific type. In this case, I want a Student

type that includes both RegularStudents and GraduateStu-

dents. In object-oriented terms, we call Student an abstract class.

Abstract classes 

define what a set of 

classes can do

Abstract classes define what other, related, classes can do. These

“other” classes are classes that represent a particular type of related

behavior. Such a class is often called a concrete class because it repre-

sents a specific, or nonchanging, implementation of a concept.

In the example, the abstract class is Student. There are two types

of Students represented by the concrete classes, Regular-

Students and GraduateStudents. RegularStudent is one kind

of Student and  GraduateStudent is also a kind of Student. 

This type of relationship is called an is-a relationship, which is for-

mally called inheritance. Thus, the RegularStudent class inherits

from Student. Other ways to say this would be, the Graduate-

Student  derives from, specializes, or is a subclass of Student. 
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Going the other way, “the Student class is the base class, generalizes,

or is the superclass of GraduateStudent and of RegularStudent.

Abstract classes act as 

placeholders for  

other classes

Abstract classes act as placeholders for other classes. I use them to

define the methods their derived classes must implement. Abstract

classes can also contain common methods that can be used by all der-

ivations. Whether a derived class uses the default behavior or

replaces it with its own variation is up to the derivation (this is con-

sistent with the mandate that objects be responsible for themselves).

This means that I can have the controller contain Students. The

reference type used will be Student. The compiler can check that

anything referred to by this Student reference is, in fact, a kind of

Student. This gives the best of both worlds:  

• The collection only needs to deal with Students (thereby

allowing the instructor object just to deal with students). 

• Yet, I still get type checking (only Students that can “Go to

their next classroom” are included).

• And, each kind of Student is left to implement its functionality

in its own way. 

Abstract classes are more than classes 

that do not get instantiated. 

Abstract classes are often described as classes that do not get

instantiated. This definition is accurate—at the implementation

level. But that is too limited. It is more helpful to define abstract

classes at the conceptual level. Thus, at the conceptual level,

abstract classes are simply placeholders for other classes. 

That is, they give us a way to assign a name to a set of related classes. This

lets us treat this set as one concept.

In the object-oriented paradigm, you must constantly think

about your problem from all three levels of perspective. 
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Visibility Since the objects are responsible for themselves, there are many

things they do not need to expose to other objects. Earlier, I men-

tioned the concept of the public interface—those methods that are

accessible by other objects. In object-oriented systems, the main

types of accessibility are:

• Public—Anything can see it.

• Protected—Only objects of this class and derived classes can see it.

• Private—Only objects from this class can see it.

Encapsulation This leads to the concept of encapsulation. Encapsulation has often

been described simply as hiding data. Objects generally do not

expose their internal data members to the outside world (that is,

their visibility is protected or private). 

But encapsulation refers to more than hiding data. In general,

encapsulation means any kind of hiding.

In the example, the instructor did not know which were the regular

students and which were the graduate students. The type of student

is hidden from the instructor (I am encapsulating the type of stu-

dent). As you will see later in the book, this is a very important

concept.

Polymorphism Another term to learn is polymorphism.

In object-oriented languages, we often refer to objects with one

type of reference that is an abstract class type. However, what we

are actually referring to are specific instances of classes derived from

their abstract classes. 

Thus, when I tell the objects to do something conceptually through

the abstract reference, I get different behavior, depending upon the

specific type of derived object I have. Polymorphism derives from

poly (meaning many) and morph (meaning form). Thus, it means
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many forms. This is an appropriate name because I have many differ-

ent forms of behavior for the same call. 

In the example, the instructor tells the students to “Go to your next

classroom.” However, depending upon the type of student, they

will exhibit different behavior (hence polymorphism).

Review of Object-Oriented Terminology

Term Description
Object An entity that has responsibilities. I implement these by 

writing a class (in code) that defines data members 
(the variables associated with the objects) and meth-

ods (the functions associated with the objects).

Class The repository of methods. Defines the data members 
of objects. Code is organized around the class. 

Encapsulation Typically defined as data-hiding, but better thought of 

as any kind of hiding.

Inheritance Having one class be a special kind of another class. 

These specialized classes are called derivations of the 

base class (the initial class). The base class is some-
times called the superclass while the derived classes 

are sometimes called the subclasses.

Instance A particular example of a class (it is always an object).

Instantiation The process of creating an instance of a class.

Polymorphism Being able to refer to different derivations of a class in 

the same way, but getting the behavior appropriate to 
the derived class being referred to.

Perspectives There are three different perspectives for looking at 

objects: conceptual, specification, and implementation. 
These distinctions are helpful in understanding the 

relationship between abstract classes and their deriva-

tions. The abstract class defines how to solve things 
conceptually. It also gives the specification for commu-

nicating with any object derived from it. Each derivation 

provides the specific implementation needed.
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Object-Oriented Programming in Action

New example Let’s re-examine the shapes example discussed at the beginning of

the chapter. How would I implement it in an object-oriented man-

ner? Remember that it has to do the following:

1. Locate the list of shapes in the database.

2. Open up the list of shapes.

3. Sort the list according to some rules.

4. Display the individual shapes on the monitor.

To solve this in an object-oriented manner, I need to define the

objects and the responsibilities they would have.

Using objects in the 

Shape program

The objects I would need are: 

Class Responsibilities (Methods)

ShapeDataBase getCollection—get a specified collection of 

shapes

Shape (an 

abstract class)

display—defines interface for Shapes

getX—return X location of Shape (used for sorting)
getY—return Y location of Shape (used for sorting)

Square (derived 
from Shape)

display—display a square (represented by this 
object)

Circle (derived 
from Shape)

display—display a circle (represented by this 
object)

Collection display—tell all contained shapes to display
sort—sort the collection of shapes

Display drawLine—draw a line on the screen
drawCircle—draw a circle on the screen
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Running the 

program

The main program would now look like this:

1. Main program creates an instance of the database object.

2. Main program asks the database object to find the set of shapes

I am interested in and to instantiate a collection object contain-

ing all of the shapes (actually, it will instantiate circles and

squares that the collection will hold).

3. Main program asks the collection to sort the shapes.

4. Main program asks the collection to display the shapes.

5. The collection asks each shape it contains to display itself.

6. Each shape displays itself (using the Display object) according

to the type of shape I have.

Why this helps— 

handling new 

requirements

Let’s see how this helps to handle new requirements (remember,

requirements always change). For example, consider the following

new requirements: 

• Add new kinds of shapes (such as a triangle). To introduce

a new kind of shape, only two steps are required:

– Create a new derivation of Shape that defines the shape. 

– In the new derivation, implement a version of the display

method that is appropriate for that shape. 

• Change the sorting algorithm. To change the method for

sorting the shapes, only one step is required:

– Modify the method in Collection. Every shape will use the

new algorithm.

Bottom line:  The object-oriented approach has limited the impact

of changing requirements.
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Encapsulation 

revisited

There are several advantages to encapsulation. The fact that it hides

things from the user directly implies the following:

• Using things is easier because the user does not need to worry

about implementation issues.

• Implementations can be changed without worrying about the

caller. (Since the caller didn’t know how it was implemented in

the first place, there shouldn’t be any dependencies.)

• The insides of an object are unknown to outside objects—they

are used by the object to help implement the function specified

by the object’s interface.

Benefit: 

reduced side effects

Finally, consider the problem of unwanted side effects that arise

when functions are changed. This kind of bug is addressed effec-

tively with encapsulation. The internals of objects are unknown to

other objects. If I use encapsulation and follow the strategy that

objects are responsible for themselves, then the only way to affect

an object will be to call a method on that object. The object’s data

and the way it implements its responsibilities are shielded from

changes caused by other objects. 

Special Object Methods

Creating and 

destroying

I have talked about methods that are called by other objects or pos-

sibly used by an object itself. But what happens when objects are

Encapsulation saves us. 

• The more I make my objects responsible for their own

behaviors, the less the controlling programs have to be

responsible for.

• Encapsulation makes changes to an object’s internal behavior

transparent to other objects.

• Encapsulation helps to prevent unwanted side effects.
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created? What happens when they go away? If objects are self-

contained units, then it would be a good idea to have methods to

handle these situations. 

These special methods do, in fact, exist and are called constructors

and destructors. 

Constructors 

initialize, or set 

up, an object

A constructor is a special method that is automatically called when

the object is created. Its purpose is to handle starting up the object.

This is part of an object’s mandate to be responsible for itself. The

constructor is the natural place to do initializations, set default

information, set up relationships with other objects, or do anything

else that is needed to make a well-defined object. All object-ori-

ented languages look for a constructor method and execute it when

the object is created. 

By using constructors properly it is easier to eliminate (or at least

minimize) uninitialized variables. This type of error usually occurs

from carelessness on the part of the developer. By having a set, con-

sistent place for all initializations throughout your code (that is, the

constructors of your objects) it is easier to ensure that initializations

take place. Errors caused by uninitialized variables are easy to fix

but hard to find, so this convention (with the automatic calling of

the constructor) can increase the efficiency of programmers.

Destructors clean up 

an object when it is 

no longer needed 

(when it has been 

deleted)

A destructor is a special method that helps an object clean up after

itself when the object goes out of existence; that is, when the object

is destroyed. All object-oriented languages look for a destructor

method and execute it when the object is being deleted. As with the

constructor, the use of the destructor is part of the object’s mandate

to be responsible for itself.

Destructors are typically used for releasing resources when objects

are no longer needed. Since Java has garbage collection (auto-

cleanup of objects no longer in use), destructors are not as important
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in Java as they are in C++. In C++, it is common for an object’s

destructor also to destroy other objects that are used only by this

object.

Summary

In this chapter In this chapter, I have shown how object orientation helps us mini-

mize consequences of shifting requirements on a system and how it

contrasts with functional decomposition. 

I covered a number of the essential concepts in object-oriented pro-

gramming and have introduced and described the primary termi-

nology. These are essential to understanding the concepts in the rest

of this book. (See Tables 1-3 and 1-4.) 

  
Table 1-3  Object-Oriented Concepts

Concept Review

Functional 

decomposition

Structured programmers usually approach program design with functional 

decomposition. Functional decomposition is the method of breaking down 

a problem into smaller and smaller functions. Each function is subdivided 
until it is manageable.

Changing 

requirements

Changing requirements are inherent to the development process. Rather 

than blaming users or ourselves about the seemingly impossible task of 
getting good and complete requirements, we should use development 

methods that deal with changing requirements more effectively. 

Objects Objects are defined by their responsibilities. Objects simplify the tasks of 
programs that use them by being responsible for themselves.

Constructors and 

destructors

An object has special methods that are called when it is created and 

deleted. These special methods are: 
• Constructors, which initialize or set up an object.

• Destructors, which clean up an object when it is deleted.

All object-oriented languages use constructors and destructors to help 
manage objects.
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Table 1-4  Object-Oriented Terminology

Term Definition

Abstract class Defines the methods and common attributes of a set of classes that are 
conceptually similar. Abstract classes are never instantiated.

Attribute Data associated with an object (also called a data member).

Class Blueprint of an object—defines the methods and data of an object of its 
type.

Constructor Special method that is invoked when an object is created.

Encapsulation Any kind of hiding. Objects encapsulate their data. Abstract classes 
encapsulate their derived concrete classes.

Derived class A class that is specialized from a superclass. Contains all of the attributes 

and methods of the superclass but may also contain other attributes or dif-
ferent method implementations.

Destructor Special method that is invoked when an object is deleted.

Functional 
decomposition

A method of analysis in which a problem is broken into smaller and 
smaller functions.

Inheritance The way that a class is specialized, used to relate derived classes from 

their abstractions.

Instance A particular object of a class.

Instantiation The process of creating an instance of a class.

Member Either data or method of a class.

Method Functions that are associated with an object.

Object An entity with responsibilities. A special, self-contained holder of both data 

and methods that operate on that data. An object’s data are protected 
from external objects. 

Polymorphism The ability of related objects to implement methods that are specialized to 

their type. 

Superclass A class from which other classes are derived. Contains the master defini-

tions of attributes and methods that all derived classes will use (and possi-

bly will override).
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CHAPTER 2 

The UML— The Unified 
Modeling Language 

Overview 

This chapter gives a brief overview of the Unified Modeling Language 
(UML), which is the modeling language of the object-oriented com-
munity. If you do not already know the UML, this chapter will give 
you the minimal understanding you will need to be able to read the 
diagrams contained in this book. 

In this chapter, 

• I describe what the UML is and why to use it. 

• I discuss the UML diagrams that are essential to this book: 
 

- The Class Diagram 

- The Interaction Diagram 

In this chapter 

  

What Is the UML? 

The UML is a visual language (meaning a drawing notation with 
semantics) used to create models of programs. By models of 
pro-grams, I mean a diagrammatic representation of the programs 
in which one can see the relationships between the objects in the 
code. 

The UML has several different diagrams —  some for analysis, others 
for design, and still others for implementation (or more accurately, 

UML offers many 

kinds of modeling 

diagrams 
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for the dissemination, that is, the distribution of the code) (see 
Table 2-1). Each diagram shows the relationships among the different 
sets of entities, depending upon the purpose of the diagram. 

Table 2-1     UML Diagrams and Their Purposes 
  

When You Are... Use the UML Diagram... 
  

In the analysis phase 

Looking at object 
interactions  

In the design phase 

Looking at an object's 
behaviors that differ 
based upon the state 
that the object is in 

In the deployment 
phase 

Use Case Diagrams, which involve entities 
interacting with the system (say, users and other 
systems) and the function points that I need to 
implement. 

Activity Diagrams, which focus on workflow of 
the problem domain (the actual space where 
people and other agents are working, the sub-
ject area of the program) rather than the logic 
flow of the program. 

Note: Since this book is principally focused on 
design, I will not cover Use Case Diagrams or 
Activity Diagrams here.  

Interaction Diagrams, which show how specific 
objects interact with each other. Since they deal 
with specific cases rather than general situations, 
they are helpful both when checking 
requirements and when checking designs. The 
most popular kind of Interaction Diagram is the 
Sequence Diagram. 

Class Diagrams, which detail the relationships 
between the classes. 

State Diagrams, which detail the different states 
an object may be in as well as the transitions 
between these states. 

Deployment Diagrams, which show how differ-
ent modules will be deployed. I will not talk about 
these diagrams here.  
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Why Use the UML? 

The UML is used primarily for communication— with myself, my Principally for 

team members, and with my customers. Poor requirements (either communications 
incomplete or inaccurate) are ubiquitous in the field of software 
development. The UML gives us tools to gather better requirements. 

The UML gives a way to determine if my understanding of the sys-    
tern is the same as others'. Because systems are complex and have 
different types of information that must be conveyed, it offers dif-
ferent diagrams specializing in the different types of information. 

One easy way to see the value of the UML is to recall your last sev- 
eral design reviews. If you have ever been in a review where some-
one starts talking about their code and describes it without a 
modeling language like the UML, almost certainly their talk was 
both confusing as well as being much longer than necessary. The 
UML is not only a better way of describing object-oriented designs, it 
also forces the designer to think through his or her approach (since 
it must be written down). 

The Class Diagram 

The most basic of UML diagrams is the Class Diagram. It both         The basic modeling 
describes classes and shows the relationships between them. The    diagram 
 types of relationships that are possible are 

• When one class is a "kind of" another class: the is-a relationship 

• When there are associations between two classes 
 

- One class "contains" another class: the has-a relationship 

- One class "uses" another class 

For clarity  

For precision 
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There are variations on these themes. For example, to say some-
thing contains something else can mean that 

• The contained item is a part of the containing item (like an 
engine in a car). 

• I have a collection of things that can exist on their own (like 
airplanes at an airport). 

The first example is called composition while the second is called 

aggregation.1 

Different ways of 

showing class 

information  

Figure 2-1 illustrates several important things. First, each rectangle 
represents a class. In the UML, I can represent up to three things in a 
class: 

• The name of the class 

• The data members of the class 

• The methods (functions) of the class 

 
Figure 2 -1   The Class Diagram — its three variations.  

I have three different ways of showing these. 

• The leftmost rectangle shows just the class' name. I would use this 
type of class representation when more detailed information is 
not needed. 

1. Gamma, Helm, Johnson, and Vlissides (the Gang of Four) call the first "aggrega tion" 
and the second "composition" — exactly the reverse of the UML. However, the 
Gang of Four book was written before the UML was finalized. The presented 
definition is, in fact, consistent with the UML's. This illustrates some of the moti-
vation for the UML; before it came out there were several different modeling lan-
guages, each with its own notation and terms.  
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• The middle rectangle shows both the name and the methods of 
the class. In this case, the Square2 has the method display. The 
plus sign (+) in front of display (the name of the method) means 
that this method is public— that is, objects other than objects of 
this class can call it. 

• The rightmost rectangle shows what I had before (the name and 
methods of the class) as well as data members of the class. In this 
case, the minus sign (-) before the data member length (which is 
of type double) indicates that this data member's value is private, 
that is it is unavailable to anything other than the object to which 
it belongs.3 

UML notation for access. 

You can control the accessibility of a class' data and method 
members. You can use the UML to notate which accessibility you 
want each member to have. The three types of accessibility avail-
able in most object-oriented languages are as follows: 

• Public: notated with a plus sign (+). 
This means all objects can access this data or method. 

• Protected: notated with a pound sign (#). 
This means only this class and all of its derivations (including 
derivations from its derivations) can access this data or 
method. 

• Private: notated with a minus sign (-). 
This means that only methods of this class can access this 
data or method. (Note: Some languages further restrict this 
to the particular object.) 

2. Whenever we refer to a class name, we will bold it as done here. 
3. In some languages, objects of the same type can share each other's private data. 
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Class Diagrams also 

show relationships 

Class Diagrams can also show relationships between different 
classes. Figure 2-2 shows the relationship between the Shape class 
and several classes that derive from it. 

  

 

Figure 2-2   The Class Diagram showing the is-a relationships. 

Showing the is-a 

relationship 

Figure 2-2 represents several things. First, the arrowhead under the 
Shape class means that those classes poin ting to Shape derive from 
Shape. Furthermore, since Shape is italicized that means it is an 
abstract class. An abstract class is a class that is used to define an 
interface for the classes that derive from it. 

  

Showing the has-a 

relationship 

There are actually two different kinds of has-a relationships. One 
object can have another object where the contained object is a part 
of the containing object— or not. In Figure 2-3, I show Airports 
"having" Aircraft. Aircraft are not part of Airports, but I can 
still say the Airport has them. This type of relationship is called 
aggregation. 

 
Figure 2-3   The Class Diagram showing the has-a relationship. 
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In this diagram, I also show that an Aircraft is either a Jet or a 
Helicopter. I can see that Aircraft is an abstract class because its 
name is shown in italics. That means that an Airport will have 
either Jet or Helicopter but will treat them the same (as Aircraft). 
The open (unfilled) diamond on the right of the Airport class 
indicates the aggregation relationship. 

The other type of has-a relationship is where the containment 
means the contained object is a part of the containing object. This type 
of relationship is also called composition. 

 

Figure 2-4   The Class Diagram showing composition and the uses 
relationship. 

Figure 2-4 shows that a Car has Tires as parts (that is, the Car is 
made up of Tires and other things). This type of has-a relationship, 
called composition, is depicted by the filled in diamond. This dia -
gram also shows that a Car uses a GasStation. The uses relation-
ship is depicted by a dashed line with an arrow. This is also called a 
dependency relationship. 

Both composition and aggregation involve one obje ct containing 
one or more objects. Composition, however, implies the contained 
object is a part of the containing object, whereas aggregation 
means the contained objects are more like a collection of things. 
We can consider composition to be an unshared association, with  

Composition and 

uses 

Composition versus 

aggregation 

Aggregatio

n 
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the contained object's lifetime being controlled by its containing 
object. The appropriate use of constructor and destructor methods 
is useful here to help facilitate object creation and destruction. 

 

Figure 2-5   The Class Diagram with a Note. 

Notes in the UML. 

In Figure 2-5, there is a new symbol: the Note. The box contain ing 
the message "open diamonds mean aggregation" is a note. They 
are meant to look like pieces of paper with the right corner folded 
back. You often see them with a line connecting them to a 
particular class indicating they relate just to that class. 

Indicating the 

number of things 

another object has 

Class Diagrams show the relationships between classes. With com-
position and aggregation, however, the relationship is more specifi-
cally about objects of that type of class. For example, it is true 
Airports have Aircraft, but more specifically, specific airports 
have specific aircraft. The question may arise— "how many aircraft 
does an airport have?" This is called the cardinality of the relationship. 
I show this in Figures 2-6 and 2-7. 
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Figure 2-6   The cardinality of the Airport-Aircraft relationship. 

Figure 2-6 tells us that when I have an Airport, it has from 0 to 
any number (represented by an asterisk here, but sometimes by the 
letter "n") of Aircraft. The "0..1" on the Airport side means that 
when I have an Aircraft, it can be contained by either 0 or 1 
Airport (it may be in the air). 

Cardinality 

  

 

Figure 2-7   The cardinality of the Car-Tire relationship. 

Figure 2-7 tells us that when I have a Car, it has eit her 4 or 5 tires (it 
may or may not have a spare). Tires are on exactly one car. I have 
heard some people assume no specification of cardinality assumes 
that there is one object. That is not correct. If cardinality is not 
specified there is no assumption made as to how many objects there 
are. 

Cardinality 

continued 
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Dashes show 

dependence 

As before, the dashed line between Car and GasStation in Figure 
2-7 shows that there is a dependency between the two. The UML 
uses a dashed arrow to indicate semantic relationships (meanings) 
between two model elements. 

  

Sequence Diagram 

How to read the 

Sequence Diagram 

Interaction Diagrams 

Class Diagrams show static relationships between classes. In other 
words, they do not show us any activity. Although very useful, 
sometimes I need to show how the objects instantiated from these 
classes actually work together. 

The UML diagrams that show how objects interact with each other 
are called Interaction Diagrams. The most common type of Interaction 
Diagram is the Sequence Diagram, such as shown in Figure 2-8. 

Sequence Diagrams are read from top to bottom. 

• Each rectangle at the top represents a particular object. Although 
many of the rectangles have class names in them, notice how 
there is a colon in front of the class name. Some of the rectangles 
have other names— for example, shapel: Square. 

• The boxes at the top give the class name (to the right of the 
colon) and optionally, a name of the object (before the colon). 

• The vertical lines represent the lifespan of the objects. Unfortu 
nately, most UML drawing programs don't support this and 
draw the lines from the top to the bottom, leaving it unclear 
when an object actually comes into existence. 

• I show objects sending messages to each other with horizontal 
lines between these vertical lines. 

• Sometimes returned values and/or objects are explicitly shown 
and sometimes it is just understood that they are returned. 
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For example, in Figure 2-8, 

• At the top I see that Main sends a "get shapes" message to the 
ShapeDB object (which isn't named). After being asked to "get 
shapes," the ShapeDB: 

- Instantiates a collection 

- Instantiates a square 

- Adds the square to the collection 

- Instantiates a circle  

- Adds the circle to the collection 

- Returns the collection to the calling routine (the Main) 

I read the rest of the diagram in this top-down fashion to see the 
rest of the action. This diagram is called a Sequence Diagram 
because it depicts the sequence of operations. 

Object: Class notation. 

In some UML diagrams, you want to refer to an object with the 
class from which it is derived. This is done by connecting them 
with a colon. In Figure 2-8,1 show shapel: Square refers to the 
shapel object which is instantiated from the Square class. 

In this chapter 

Summary  

The purpose of the UML is to both flesh out your designs and to 
communicate them. Do not worry so much about creating diagrams 
the "right" way. Think about the best way to communicate the con-
cepts in your design. In other words, 

If you think something needs to be said, use a Note to say it. 
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• If you aren't sure about an icon or a symbol and you have to 
look it up to find out its meaning, include a note to explain it 
since others may be unclear about its meaning, too. 

• Go for clarity. 

Of course, this means you should not use the UML in nonstandard 
ways— that does not communicate properly either. Just consider 
what you are trying to communicate as your draw your diagrams. 



PART II 

The Limitations of 
Traditional Object-Oriented  

Design 

Part Overview 

In this part, I solve a real-world problem using standard 
object-oriented methods. This was a problem I worked on when I 
was just beginning to learn design patterns. 

Chapter        Discusses These Topics 

3 • A description of the CAD/CAM problem: extract informa- 
tion from a large computer-aided design/computer-aided 
manufacturing (CAD/CAM) database to feed a complex and 
expensive analysis program. 

• Because the CAD/CAM system continues to evolve, the 
problem cries out for flexible code.  

4 • My first solution to the CAD/CAM problem, using standard 
object-oriented methods. 

• At the time I actually worked on this problem, I hadn't yet 
learned the essence of the principles behind many design 
patterns. This resulted in an initial solution that over-relied 
on inheritance. It was easy to design and the initial solu 
tion worked, but I ended up with too many special cases. 

• My solution had significant problems— difficult mainte 
nance and inflexibility— just the things I hoped to avoid 
with object-oriented design.  

• Later, in Part IV, I will revisit the problem in Chapter 12,  
"Solving the CAD/CAM Problem with Patterns." I will solve 
the problem again using design patterns to orchestrate the 
application's architecture and its implementation details. 
By doing this, I create a solution that is much easier to 
maintain and is much more flexible.  

In this section 

43 
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This part is important to read because it illustrates a typical problem that 
results in traditional object-oriented design— taller-than-necessary 
inheritance hierarchies that have tight coupling and low cohesion. 

Why read this part  



CHAPTER 3 

A Problem That Cries Out for 
Flexible Code  

Overview 

This chapter gives an overview of a problem we want to solve: 
extracting information from a large CAD/CAM database to feed a 
complex and expensive analysis program. Because the CAD/CAM 
system continues to evolve, the problem cries out for flexible code. 

In this chapter, I give an overview of the CAD/CAM problem, the 
vocabulary of the domain, and important features of the problem. 

In this chapter 

  

Extracting Information from 
a CAD/CAM System 

I am now going to review a past design of mine that got me on the 
road to the insights contained in this book. 

I was supporting a design center in which engineers used a CAD/ 
CAM system to make drawings of sheet metal parts. An example of 
one of these parts is shown in Figure 3-1. 

My problem was to write a computer tool to extract information 
from the CAD/CAM system so that an expert system could use it in a 
particular way. The expert system needed this information in order 
to conrol the manufacturing of the part. Since the expert system was 
complex to modify and would have a longer life than the current 
version of the CAD/CAM system, I wanted to write the 
information-extracting tool so that it could easily be adapted to new 
revisions of the CAD/CAM system. 

The problem: extract 

information for an 

expert system 

45 
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Figure 3 -1    Example of a piece of sheet metal.  

What are expert systems? 

An expert system is a special computer system that uses the rules of a 
human expert(s) to make automated decisions. Building expert 
systems involves two steps. First, acquire and model the set of 
rules that experts use to make decisions and accomplish the task. 
Second, implement this set of rules in the computer system; this 
step usually uses some sort of commercially available expert sys-
tem tool. The first step is by far the more difficult assignment for 
the analyst. 

Terminology: 

classifying the shapes 

cut from the sheet 
metal 

Understand the Vocabulary 

The first task in analysis is to understand the vocabulary used by 
the users and the experts in the problem domain. The most impor tant 
terms used are those that describe the dimensions and geome try in 
the sheet metal. 

As shown in Figure 3-1, a piece of sheet metal is cut to a particular 
size and has shapes cut out inside it. Experts call these cutouts by 
the general name "feature." A piece of sheet metal can be fully 
specified by its external dimensions and the features contained in it. 
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The types of shapes— features— that may be found in a piece of 
sheet metal are described in Table 3-1. These are the shapes the sys-
tem will have to address. 

Table 3-1     Shapes Found in a Piece of Sheet Metal 
  

Shape Description 

Slot Straight cuts in the metal of constant width that terminate 
with either squared or rounded edges. Slots may be oriented to 
any angle. They are usually cut with a router bit. Figure 3-1 has 
three slots on the left side; one is oriented vertically while the 
others are oriented horizontally. 

Hole Circles cut into the sheet metal. Typically they are cut with 
drill bits of varying width. Figure 3-1 has a hole toward the left 
surrounded by the three slots and has a larger hole toward the 
right of the sheet metal. 

Cutout Squares with either squared or rounded edges. These are 
cut by a high-powered punch hitting the metal with great impact. 
Figure 3-1 has three cutouts; the lower right one is oriented at 45 
degrees. 

Special Preformed shapes that are not slots, holes, or cutouts. In 
these cases, a special punch has been made to create these 
quickly. Electrical outlets are a common "special" case. The 
star shape in Figure 3-1 is a special shape.  

Irregular        Anything else. They are formed by using a combination of tools. 
The irregularly shaped object toward the bottom right of Figure 
3-1 is an irregular shape.  

CAD/CAM experts also use additional terminology that is impor-    Additional 
tant to understand, as described in Table 3-2.  terminology  
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Table 3-2    Additional CAD/CAM Terminology 
  

Term Description 
  

Geometry  

Part 

Dataset or model 

NC machine and 
NC set  

The description of how a piece of sheet metal looks: 
the location of each of the features and their dimen-
sions and the external shape of the sheet metal. 

The piece of sheet metal itself. I need to be able to 
store the geometry of each of the parts. 

The set of records in the CAD/CAM database that 
stores the geometry of a part. 

Numerically controlled (NC) machine. A special 
manufacturing tool that cuts metal using a variety of 
cutting heads that are controlled by a computer pro-
gram. Usually, the computer program is fed the 
geometry of the part. This computer program is 
composed of commands called the NC set. 

  

High-level 
description of the 

system's tasks 

Describe the Problem 

I need to design a program that will allow the expert system to open 
and read a model containing the geometry of a part that I want to 
analyze and then to generate the commands for the numerically 
controlled (NC) machine to build the piece of sheet metal. 

I am only concerned about sheet metal parts in this example. How-
ever, the CAD/CAM system can handle many other kinds of parts. 

At a high level, I want the system to perform the following steps: 

• Analyze pieces of sheet metal. 

• See how they should be made, based on the features they 
contain. 

• Generate a set of instructions that are readable by manufactur  
ing equipment. This set of instructions is called an NC set or a 
numerical control set. 
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•  Give these instructions to manufacturing equipment when I want 
to make any of these parts 

The difficulty with my programming task is that I cannot simply 
extract the features from the dataset and generate NC set commands. 
The type of commands to use and the order of these commands 
depend upon the features and their relation to other features. 

For example, take a shape that is made up of several features: a 
shape made up of a cutout with two slots. One of the slots runs ver-
tically through the cutout while the other runs horizontally 
through it. This is shown in Figure 3-2. 

 
Figure 3-2   A cutout with two slots. Left: How the part looks when 
finished. Right: It is really composed of three features. 

It is important to realize that I am actually given the three features on 
the right to make up the shape on the left. That is because the 
engineers using the CAD/CAM system typically think in terms of 
the features to make up more complex shapes because they know 
that doing so will enable quicker manufacturing of the parts. 

The expert system's 

task is not trivial 
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... because it must 

determine the order 

of the features 

The problem is, I cannot just generate the NC set commands for the 
three features independently of one another and hope the part 
comes out properly— there is often a particular order that must be 
used. In the example, if I do the slots first and then the cutout, as 
shown in Figure 3-3, when the cutout is made (remember a cutout 
is created by using a high-impact punch), the sheet metal will bend 
because the slots will have weakened the metal. 

 
Figure 3-3   A bad approach to cutting out the openings. This sequence 
results in weakened, bent sheet metal. 

I must create the shape shown in Figure 3-2 by punching out the 
cutout first, then doing the slots. This works because the slots are 
created using a router, which applies sideways pressure. Making the 
cutout first actually makes the job easier, not harder. This is shown in 
Figure 3-4. 

Fortunately, someone had already worked out the rules for the 
expert system. I did not have to worry about that. I took the time to 
explain these challenges so that you could understand the type of 
information needed by the expert system. 



Chapter 3    •    A Problem That Cries Out for Flexible Code        51 

 
Figure 3-4   An expert's approach to cutting out the openings. This 

approach results in correct cutouts. 

The Essential Challenges 
and Approaches 

The CAD/CAM system is constantly evolving, changing. My real 
problem was to make it possible for the company to continue to use 
its expensive expert system while the CAD/CAM system changed. 

In my situation, they were currently using one version of the CAD/ 
CAM system, Version 1 (V1), and a new version, Version 2 (V2), 
was coming out shortly. Although one vendor made both versions, 
the two versions were not compatible. 

For a variety of technical and administrative reasons, it was not 
possible to translate the models from one version to the next. Thus, 
the expert system needed to be able to support both versions of the 
CAD/CAM system. 

In fact, the situation was even a little worse than just having to 
accomodate two different versions of the CAD/CAM system. I knew 
a third version was coming out before long, but did not know when 
that would happen. In order to preserve the investment in the com-
pany's expert system, I wanted a system architecture approximately 
like the one diagrammed in Figure 3-5. 

Challenge: allow the 
expert system to work 

with a constantly 
changing CAD/CAM 

system 



52       Part II    •   The Limitations of Traditional Object-Oriented Design 

 

Figure 3-5   High-level view of my solution. 

Polymorphism isn 't 

needed at all levels 

High-level class 

diagram 

A more detailed look 

at the CAD/CAM 

systems 

In other words, the application can initalize everything so that the 
expert system uses the appropriate CAD/CAM system. However, 
the expert system has to be able to use either version. Hence, I need 
to make V1 and V2 look the same to the expert system.  

Although polymorphism is definitely needed at the geometry 
extractor level, it will not be needed at the feature level. This is 
because the expert system needs to know what type of features it is 
dealing with. However, we don't want to make any changes to the 
expert system when Version 3 of the CAD/CAM system comes out. 

A basic understanding of object-oriented design implies that I 
will have a high-level class diagram similar to the one shown in 
Figure 3-6. 

In other words, the expert system relates to the CAD/CAM systems 
through the Model class. The Main class takes care of instantiating 
the correct version of the Model (that is, V1Model or V2Model). 

Now, I will describe the CAD/CAM systems and how they work. 
Unfortunately , the two are very different beasts. 

 



 
Figure 3-6   Class diagram of my solution.1 

Version 1 is essentially a collection of subroutine libraries. To get 
information from a model, a series of calls must be made. A typical 
set of queries would be the following: 

Step   Do this in CAD/CAM Version 1 

1. Open model XYZ and return a handle to it 
2. Store this handle as H 

3. For model, referred to by H, tell me how many features 
are present, store as N 

4. For each feature in the model referred to by H (from 1 to N) 
4a.        for model referred to by H, tell me the ID of the ith element 
and store as ID 

4b.        for model referred to by H, tell me the feature type of ID 

and store as T  

4c.         for model referred to by H, tell me the X coordinate of ID 
and store as X (use T to determine the proper routine to 

call, based on type) 
 

1. This and all other class diagrams in this book use the Unified Modeling Language 
(UML) notation. See Chapter 2, "The UML— T he Unified Modeling Language" for a 
description of UML notation. 
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CAD/CAM V1 is 
dearly not 

object-oriented 

This system is painful to deal with and clearly not object-oriented. 
Whoever is using the system must maintain the context for every 
query manually. Each call about a feature must know what kind of 
feature it has. 

  

CAD/CAM V2 is 

object-oriented 

The CAD/CAM vendor realized the inherent limitations of this type 
of system. The primary motivation for building V2 was to make it 
object-oriented. The geometry in V2 is therefore stored in objects. 
When a system requests a model, it gets back an object which rep-
resents the model. This model object contains a set of objects, each 
representing a feature. Since the problem domain is based on features, 
it is not surprising that the classes V2 uses to represent these features 
correspond exactly to the ones I have mentioned already: slots, 
holes, cutouts, specials, and irregulars. 

Therefore, in V2, I can get a set of objects that correspond to the 
features that exist in the sheet metal. The UML diagram in Figure 3-7 
shows the classes for the features. 

 
Figure 3-7   Feature classes of V2. 

The OOG stands for object-oriented geometry, just as a reminder 
that V2 is an object-oriented system. 
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Summary 

In this chapter, I described the CAD/CAM problem. 

• I must extract information from different CAD/CAM systems in 
the same way. This will allow a system in which the company 
has a great investment (an expert system) to continue working 
without expensive modifications every time the CAD/CAM sys 
tems changes. 

• I have two systems that are implemented in completely differ 
ent ways, even though they contain essentially the same infor  
mation. 

This task has many similarities to other problems I have run across 
in projects. There are different specific implementations of systems, 
but I want to allow other objects to communicate with these different 
implementations in the same way. 

In this chapter 



CHAPTER 4 

A Standard Object-Oriented 
Solution 

Overview 

This chapter gives an initial solution to the problem discussed in 
Chapter 3, "A Problem That Cries Out for Flexible Code." It is a rea-
sonable first attempt at a solution and gets the job done quickly. 
However, it misses an important system requirement: flexibility as 
the CAD/CAM system continues to evolve. 

In this chapter, I describe a solution based on object orientation. It is 
not a great solution, but it is a solution that would work. 

Note: I will only show Java code examples in the main body of this 
chapter. The equivalent C++ code examples can be found at the end 
of this chapter. 

Solving with Special Cases 

Given the two different CAD/CAM systems described in Chapter 3, 
"A Problem That Cries Out for Flexible Code," how do I build an 
information-extraction system that will look the same to a client 
object regardless of which CAD/CAM system that I have? 

In thinking how to solve this problem, I reasoned that if I can solve it 
for slots, I can use that same solution for cutouts, holes, etc. In 
thinking about slots, I saw that I could easily specialize each case. 
That is, I'd have a Slot class and make a derivation for Slots when I 
had the V1 system and another derivation when I had a V2 sys tem. 
I show this in Figure 4-1. 

In this chapter 

Getting to a 
solution: special 

subclasses for each 

version 
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Completing the 

solution 

Figure 4-1   The design for slots. 

I complete this solution by extending it for each of the feature 
types, as shown in Figure 4-2. 

 
Figure 4-2   Original solution to the problem of extracting information. 

Of course, Figure 4-2 is pretty high-level. Each of the vixxx classes 
would communicate with the corresponding V1 library. Each of the 
V2xxx classes would communicate with the corresponding object in 
the V2 model. 

This is easier to visualize by looking at each class individually. 
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• visiot would be implemented by remembering the model it  
belongs to and its ID in the V1 system when it is instantiated. 
Then, whenever one of the visiot methods is called to get 
information about it, the method would have to call a sequence 
of subroutine calls in V1 to get that information. 

• V2Slot would be implemented in a similar fashion, except  
that, in this case, each V2Slot object would contain the slot 
object corresponding to it in the V2 sys tem. Then, whenever 
the object was asked for information, it would simply pass this 
request on to the OOGSlot object and pass the response back to 
the client object that originally requested it. 

A more detailed diagram incorporating the V1 and V2 systems is 
shown in Figure 4-3. 

 
F i g u r e  4 - 3    A  f i r s t  s o l u t i o n .  
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Code fragments help 

to understand the 

design 

I am going to provide code examples for a couple of the classes in this 
design. These examples are just to help you understand how this 
design could be implemented. If you feel comfortable that you could 
implement this design, feel free to skip the following Java code 
examples (C++ code examples appear at the end of this chapter). 

Example 4-1 Java Code Fragments: Instantiating the V1 Features 

// segment of code that instantiates the features // 
no error checking provided--for illustration // 
purposes only 

// each feature object needs to know the model number // 
and feature ID it corresponds to in order to retrieve // 
information when requested. Note how this information // is 
passed into each object's constructor 

// open model 

modelNum= V1OpenModel( modelName); 

nElements = V1GetNumberofElements(modelNum); 

Feature features[]= new Feature[MAXFEATURES]; 

// do for each feature in the model for 
(i= 0; i < nElements; i++) { 

// determine feature present and create // 
appropriate feature object 
switch( V1GetType( modelNum, i)) { case 
SLOT: 

features [i] = 
new V1Slot( modelNum, 

VlGetID( modelNum, i)); 
break; 

case HOLE: 

features [i] = 
new VlHole( modelNum, 

VlGetID( modelNum, i) ) ; 
break; 
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Example 4-2 Java Code Fragments: 
Implementation of V1 Methods 

// modelNum and myID are private members containing 
// information about the model and feature (in V1) this 
// feature corresponds to 

class V1Slot { double 
getx () { 
// call appropriate method for V1 to get needed // 
information. Note: this method may actually // call 
several methods in V1 // to get the information, return 
V1GetXforSlot( modelNum, myID); } 

class VlHole { double 
getx () { 

// call appropriate method for V1 to get needed // 
information. Note: this method may actually // call 
several methods in V1 // to get the information, return 
V1GetXforHole( modelNum, myID); } } 

Example 4-3 Java Code Fragments: 
Instantiating the V2 Features 

// segment of code that instantiates the features // 
no error checking provided--for illustration // 
purposes only 

// each feature object needs to know the feature in the // V2 
system it corresponds to in order to retrieve // information 
when requested. Note how this information // is passed into 
each object's constructor 

// open model 
myModel= V20penModel( modelName); 

nElements= myModel.getNumElements () ; Feature 
features[]= new Feature[MAXFEATURES]; 

(continued) 
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In Figure 4-3, I have added a few of the methods that are needed by 
the features. Note how they differ depending upon the type of 
feature. This means I do not have polymorphism across features. 
This is not a problem, however, since the expert system needs to 
know what type of feature it has anyway. This is because the expert 
system needs different kinds of information from different types of 
features. 

This solution satisfies 
one goal: a common 

API 

  

This brings up the point that I am not so interested in polymor-
phism of the features. Rather, I need the ability to plug-and-play 
different CAD/CAM systems without changing the expert system. 

What I am trying to do— handle multiple CAD/CAM versions trans-
parently— gives me several clues that this solution is not a good 
one: 

but contains many 
challenges 

Redundancy amongst methods— I can easily imagine that the 
methods that are making calls to the V1 system will have many 
similarities between them. For example, the Vlgetx for Slot 
and Vlgetx for Hole will be very similar. 

Messy— This is not always a good predictor, but it is another fac-
tor that reinforces my discomfort with the solution. 

Tight coupling— This solution has tight coupling because the 
features are related to each other indirectly. These relationships 
manifest themselves as the likely need to modify all of the fea-
tures if the following occurs: 

- A new CAD/CAM system is required. 

- An existing CAD/CAM system is modified. 

Low cohesion— Cohesion is fairly low since methods to perform 
core functions are scattered amongst the classes. 
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However, my greatest concern comes from looking into the future. 
Imagine what will happen when the third version of the CAD/CAM 
system arrives. The combinatorial explosion will kill us! Look at the 
third row of the class diagram in Figure 4-3. 

• There are five types of features. 

• Each type of feature has a pair of classes, one for each CAD/ 
CAM system. 

• When I get the third version, I will have groups of three, not 
groups of two. 

• Instead of ten classes, I will have fifteen. 

This is certainly not a system I will have fun maintaining! 

A pitfall of analysis: too much 
attention to details too early. 

One common problem that we analysts can have is that we dive 
into the details too early in the development process. It is natural 
because it is easy to work with these details. Solutions for the 
details are usually apparent, but are not necessarily the best thing 
to start with. Delay as long as you can before you commit to the 
details. 

In this case, I achieved one objective: a common API for feature 
information. Also, I defined my objects from a responsibility 
point of view. However, I did this at the price of creating special 
cases for everything. When I get new special cases, I will have to 
implement them as such. Hence, the high maintenance costs. 

.. . and intuition 

says there must be a 
better solution 

This was my first-blush solution and I immediately disliked it. My 
dislike grew more from my intuition than from the more logical 
reasons I gave above. I felt that there were problems. 
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In this case, I felt strongly that a better solution existed. Yet, two 
hours later, this was still the best I could come up with. The problem, 
it turned out, was my general approach, as will be seen later in this 
book. 

Pay attention to your instincts. 

Gut instinct is a surprisingly powerful indicator of the quality of a 
design. I suggest that developers learn to listen to their instincts. 

By gut instinct, I mean the sensation in your stomach when you 
see something you do not like. I know this sounds unscientific 
(and it is), but my experience has shown me consistently that 
when I have an instinctive dislike for a design, a better one lies 
around the corner. Of course, there are sometimes several different 
corners nearby and I'm not always sure where the solution is. 

Summary  

I showed how easy it is to solve this problem by special-casing 
everything. The solution is straightforward. It allows me to add 
additional methods without changing what I already have. How ever, 
there are several disadvantages to it: high redundancy, low cohesion, 
and class explosion (from future changes). 

The overreliance on inheritance will result in higher maintenance 
costs than should occur (or at least, than I feel should occur). 

In this chapter 
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Supplement: C++ Code Examples 

Example 4-5   C++ Code Fragments: 
Instantiating the V1 Features 

// segment of code that instantiates the features // no 
error checking provided--for illustration // purposes 
only 

// each feature object needs to know the model number 
// and feature ID it corresponds to in order to retrieve 
// information when requested. Note how this information 

// is passed into each object's constructor 

// open model 

modelNum= V1OpenModel( modelName); 

nElements= V1GetNumberofElements(modelNum); 

Feature *features[MAXFEATURES]; 

// do for each feature in the model for 
(i= 0; i < nElements; i + + ) { 

// determine feature present and create // 
appropriate feature object 
switch( V1GetType( modelNum, i)) { case 
SLOT: 

features[i]= 
new V1Slot( modelNum, 

VlGetID( modelNum, i)); 
break; 

case HOLE: 

features [i] = 
new VlHole( modelNum, 

VlGetID( modelNum, i)); 
break; 

}
 } 
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Example 4-6 C++ Code Fragments: 
Implementation of V1 Methods 

// modelNum and myID are private members containing 
// information about the model and feature (in V1) this 
// feature corresponds to 

double VlSlot::getX () { 
// call appropriate method for V1 to get needed 
// information. Note: this method may actually 
// call several methods in V1 
// to get the information. 
return V1GetXforSlot( modelNum, myID); }  

double VlHole::getX (} { 
// call appropriate method for V1 to get needed 
// information. Note: this method may actually 
// call several methods in V1 
// to get the information. 
return V1GetXforHole( modelNum, myID); \ 

Example 4-7 C++ Code Fragments: 
Instantiating the V2 Features 

// segment of code that instantiates the features // 
no error checking provided--for illustration // 
purposes only 

// each feature object needs to know the feature in the // V2 
system it corresponds to in order to retrieve // information 
when requested. Note how this information // is passed into each 
object's constructor 

// open model 
myModel= V20penModel( modelName); 

nElements= myModel->getNumElements(); 
Feature *features[MAXFEATURES]; 

OOGFeature *oogF; 
// do for each feature in the model 
for (i= 0; i < nElements; i++) { 

(continued) 
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Example 4-7   C++ Code Fragments: 
Instantiating the V2 Features (continued) 

// determine feature present and create // 
appropriate feature object oogF= 
myModel->getElement(i); 

switch( oogF->myType()) 
{ case SLOT: 

features[i]= new V2Slot( oogF); 
break; 

case HOLE: 

features [i]= new V2Hole( oogF}; 
break; 

} }
 } 

Example 4-8   C++ Code Fragments: 
Implementation of V2 Methods 

// oogF is a reference to the feature object in V2 that // 
the object containing it corresponds to 

double V2Slot::getX (} { 
// call appropriate method on oogF to get needed 
// information. 
return oogF->getX(); } 

double V2Hole::getX () { 
// call appropriate method on oogF to get needed 
// information. 
return oogF->getX(); } 



PART III 

Design Patterns  

Part Overview  

This part introduces design patterns: what they are and how to 
use them. Four patterns pertinent to the CAD/CAM problem 
(Chapter 3, "A Problem That Cries Out for Flexible Code") are 
described. They are presented individually and then related to the 
earlier problem. In learning these patterns, I emphasize the 
object-oriented strategies espoused by the Gang of Four (as the 
authors Gamma, Helm, Johnson, and Vlissides are often referred to) 
in their seminal work, Design Patterns: Elements of Reusable 
Object-Oriented Software. 

In this part 

  

Chapter Discusses These Topics 

5 • An introduction to design patterns. 
• The concept of design patterns, their origins in architec 

ture, and how they apply in the discipline of software 
design. 

• The motivations for studying design patterns. 

6 • The Facade pattern: what it is, where it is used, and 
how it is implemented.  

• How the Facade pattern relates to the CAD/CAM 
problem. 

7 • The Adapter pattern: what it is, where it is used, and 
how it is implemented.  

• Comparison between the Adapter pattern and the 
Facade pattern.  

• How the Adapter pattern relates to the CAD/CAM 
problem. 

69 
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8 • Some important concepts in object-oriented program- 
ming: polymorphism, abstraction, classes, and encapsu-
lation. It uses what has been learned in Chapters 5-7. 

9 • The Bridge pattern. This pattern is quite a bit more 
complex than the previous patterns. It is also much more 
useful; therefore, I go into great detail with the Bridge 
pattern.  

• How the Bridge pattern relates to the CAD/CAM 
problem. 

10 • The Abstract Factory pattern, which focuses on creat- 
ing families of objects. What the pattern is, how it is used 
and implemented.  

• How the Abstract Factory pattern relates to the CAD/ 
CAM problem. 

Objectives  At the end of this section, the reader will understand what design 
patterns are, why they are useful, and will be familiar with four 
specific patterns. The reader will also see how these patterns relate 
to the earlier CAD/CAM problem. This information, however, may 
not be enough to create a better design than we arrived at by 
over-relying on inheritance. However, the stage is set for using 
patterns in a way different from the way most design pattern 
practitioners use them. 
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CHAPTER 5

An Introduction 
to Design Patterns

Overview

In this chapterThis chapter introduces the concept of design patterns. 

In this chapter,

• I discuss the origins of design patterns in architecture and how

they apply in the discipline of software design. 

• I discuss the motivations for studying design patterns.

Design patterns and 

object-oriented 

design reinforce 

each other

Design patterns are part of the cutting edge of object-oriented tech-

nology. Object-oriented analysis tools, books, and seminars are

incorporating design patterns. Study groups on design patterns

abound. It is often suggested that people learn design patterns only

after they have mastered basic object-oriented skills. I have found

that the opposite is true: learning design patterns early in the learn-

ing of object-oriented skills greatly helps to improve  understanding

of object-oriented analysis and design. 

Throughout the rest of the book, I will discuss not only design pat-

terns, but also how they reveal and reinforce good object-oriented

principles. I hope to improve both your understanding of these

principles and illustrate why the design patterns being discussed

here represent good designs.

Give this a chanceSome of this material may seem abstract or philosophical. But give

it a chance! This chapter lays the foundation for your understand-

ing of design patterns. Understanding this material will enhance

your ability to understand and work with new patterns. 
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I have taken many of my ideas from Christopher Alexander’s The

Timeless Way of Building.1 I will discuss these ideas throughout this

book.

Design Patterns Arose from 
Architecture and Anthropology

Is quality objective? Years ago, an architect named Christopher Alexander asked him-

self, “Is quality objective?” Is beauty truly in the eye of the beholder

or would people agree that some things are beautiful and some are

not? Now, the particular form of beauty that Alexander was inter-

ested in was one of architectural quality: what makes us know

when an architectural design is good? For example, if a person

were going to design an entryway for a house, how would he or

she know that the design was good? Can we know good design? Is

there an objective basis for such a judgment? A basis for describing

our common consensus? 

Alexander postulates that there is such an objective basis within

architectural systems. The judgment that a building is beautiful is

not simply a matter of taste. We can describe beauty through an

objective basis that can be measured. 

The discipline of cultural anthropology discovered the same thing.

That body of work suggests that within a culture, individuals will

agree to a large extent on what is considered to be a good design,

what is beautiful. Cultures make judgments on good design that

transcend individual beliefs. I believe that there are transcending

patterns that serve as objective bases for judging design. A major

branch of cultural anthropology looks for such patterns to describe

the behaviors and values of a culture.2

1. Alexander, C., Ishikawa, S., Silverstein, M., The Timeless Way of Building, New 
York: Oxford University Press, 1979.

2. The anthropologist Ruth Benedict is a pioneer in pattern-based analysis of cul-
tures. For examples, see Benedict, R., The Chrysanthemum and the Sword, Boston: 
Houghton Mifflin, 1946.
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The proposition behind design patterns is that the quality of soft-

ware systems can also be measured objectively.

How do you get good 

quality repeatedly?

If you accept the idea that it is possible to recognize and describe a

good quality design, then how do you go about creating one? I can

imagine Alexander asking himself, 

What is present in a good quality design that is not present in a

poor quality design?

and

What is present in a poor quality design that is not present in a

good quality design?

These questions spring from Alexander’s belief that if quality in

design is objective, then we should be able to identify what makes

designs good and what makes designs bad.

Look for the 

commonalties

Alexander studied this problem by making many observations of

buildings, towns, streets, and virtually every other aspect of living

spaces that human beings have built for themselves. He discovered

that, for a particular architectural creation, good constructs had

things in common with each other. 

. . . especially

commonality in 

the features of the 

problem to be solved

Architectural structures differ from each other, even if they are of

the same type. Yet even though they are different, they can still be

of high quality. 

For example, two porches may appear structurally different and yet

both may still be considered high quality. They might be solving dif-

ferent problems for different houses. One porch may be a transition

from the walkway to the front door. Another porch might be a

place for shade on a hot day. Or two porches might solve a common

problem (transition) in different ways. 

ch05.fm  Page 73  Friday, June 8, 2001  11:59 AM



74 Part III • Design Patterns

Alexander understood this. He knew that structures couldn’t be

separated from the problem they are trying to solve. Therefore, in

his quest to identify and describe the consistency of quality in

design, Alexander realized that he had to look at different struc-

tures that were designed to solve the same problem. For example,

Figure 5-1 illustrates two solutions to the problem of demarking an

entryway.

Figure 5-1 Structures may look different but still solve a common 

problem.

This led to the 

concept of a pattern

Alexander discovered that by narrowing his focus in this way—by

looking at structures that solve similar problems—he could discern

similarities between designs that were high quality. He called these

similarities, patterns.

He defined a pattern as “a solution to a problem in a context.” 

Each pattern describes a problem which occurs over and

over again in our environment and then describes the

core of the solution to that problem, in such a way that

you can use this solution a million times over, without

ever doing it the same way twice.3

3. Alexander, C., Ishikawa, S., Silverstein, M., A Pattern Language, New York: Oxford 
University Press, 1977, p. x.
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Let’s review some of Alexander’s work to illustrate this. In Table 5-1

I will present an excerpt from his The Timeless Way of Building,4 an

excellent book that presents the philosophy of patterns succinctly.

4. Alexander, C., Ishikawa, S., Silverstein, M., The Timeless Way of Building, New 
York: Oxford University Press, 1977.

Table 5-1  Excerpt from The Timeless Way of Building

Alexander Says . . . My Comments . . .

In the same way, a courtyard, which is prop-

erly formed, helps people come to life in it.

A pattern always has a name and has a purpose. 

Here, the pattern’s name is Courtyard and its pur-
pose is to help people to come to life in it.

Consider the forces at work in a courtyard. 

Most fundamental of all, people seek some 
kind of private outdoor space, where they can 

sit under the sky, see the stars, enjoy the sun, 

perhaps plant flowers. This is obvious.

Although it might be obvious sometimes, it is 

important to state explicitly the problem being 
solved, which is the reason for having the pattern 

in the first place. This is what Alexander does here 

for Courtyard.

But there are more subtle forces too. For 

instance, when a courtyard is too tightly 

enclosed, has no view out, people feel 
uncomfortable, and tend to stay away . . . they 

need to see out into some larger and more 

distant space.

He points out a difficulty with the simplified solu-

tion and then gives us a way to solve the problem 

that he has just pointed out.

Or again, people are creatures of habit. If they 

pass in and out of the courtyard, every day, in 

the course of their normal lives, the courtyard 
becomes familiar, a natural place to go . . . 

and it is used. 

Familiarity sometimes keeps us from seeing the 

obvious. The value of a pattern is that those with 

less experience can take advantage of what oth-
ers have learned before them: both what must be 

included to have a good design, and what must be 

avoided to keep from a poor design.

But a courtyard with only one way in, a place 

you only go when you “want” to go there, is an 

unfamiliar place, tends to stay unused . . . 
people go more often to places which are 

familiar.

(continued)
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The four compo-

nents required  of 

every pattern 

description

To review, Alexander says that a description of a pattern involves

four items: 

• The name of the pattern

• The purpose of the pattern, the problem it solves

• How we could accomplish this

• The constraints and forces we have to consider in order to

accomplish it

Or again, there is a certain abruptness about 
suddenly stepping out, from the inside, 

directly to the outside . . . it is subtle, but 

enough to inhibit you.

If there is a transitional space—a porch or a 

veranda, under cover, but open to the air—

this is psychologically half way between 
indoors and outdoors, and makes it much 

easier, more simple, to take each of the 

smaller steps that brings you out into the 
courtyard . . .

He proposes a solution to a possibly overlooked 

challenge to building a great courtyard.

When a courtyard has a view out to a larger 

space, has crossing paths from different 
rooms, and has a veranda or a porch, these 

forces can resolve themselves. The view out 

makes it comfortable, the crossing paths help 
generate a sense of habit there, the porch 

makes it easier to go out more often . . . and 

gradually the courtyard becomes a pleasant 
customary place to be.

Alexander is telling us how to build a great 

courtyard . . .

. . . and then tells us why it is great.

Table 5-1  Excerpt from The Timeless Way of Building (continued)

Alexander Says . . . My Comments . . .
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Patterns exist for 

almost any design 

problem 

Alexander postulated that patterns can solve virtually every archi-

tectural problem that one will encounter. He further postulated that

patterns could be used together to solve complex architectural

problems. 

. . . and may be 

combined to solve 

complex problems

How patterns work together will be discussed later in this book. For

now, I want to focus on his claim that patterns are useful to solve

specialized problems.

Moving from Architectural to 
Software Design Patterns

What does all of this architectural stuff have to do with us software

developers? 

Adapting Alexander 

for software

Well, in the early 1990s some smart developers happened upon

Alexander’s work in patterns. They wondered if what was true for

architectural patterns would also be true for software design.5

• Were there problems in software that occur over and over again

that could be solved in somewhat the same manner?  

• Was it possible to design software in terms of patterns, creating

specific solutions based on these patterns only after the patterns

had been identified? 

The group felt the answer to both of these questions was “unequiv-

ocally yes.” The next step was to identify several patterns and

develop standards for cataloging new ones.

5. The ESPRIT consortium in Europe was doing similar work in the 1980s. ESPRIT’s 
Project 1098 and Project 5248 developed a pattern-based design methodology 
called Knowledge Analysis and Design Support (KADS) that was focused on pat-
terns for creating expert systems. Karen Gardner extended the KADS analysis 
patterns to object orientation. See Gardner, K., Cognitive Patterns: Problem-Solving 
Frameworks for Object Technology, New York: Cambridge University Press, 1998. 
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The Gang of Four 

did the early work 

on Design Patterns

Although many people were working on design patterns in the

early 1990s, the book that had the greatest influence on this fledging

community was Design Patterns: Elements of Reusable Object-Oriented

Software6 by Gamma, Helm, Johnson, and Vlissides. In recognition

of their important work, these four authors are commonly and

affectionately known as the Gang of Four.

This book served several purposes:  

• It applied the idea of design patterns to software design. 

• It described a structure within which to catalog and describe

design patterns.

• It cataloged 23 such patterns. 

• It postulated object-oriented strategies and approaches based

on these design patterns. 

It is important to realize that the authors did not create the patterns

described in the book. Rather, the authors identified these patterns

as already existing within the software community, patterns that

reflected what had been learned about high-quality designs for spe-

cific problems (note the similarity to Alexander’s work).

Today, there are several different forms for describing design pat-

terns. Since this is not a book about writing design patterns, I will

not offer an opinion on the best structure for describing patterns;

however, the following items listed in Table 5-2 need to be included

in any description.

For each pattern that I present in this book, I present a one-page

summary of the key features that describes that pattern.  

 

6. Gamma, E., Helm, R., Johnson, R., Vlissides, J., Design Patterns: Elements of 
Reusable Object-Oriented Software, Reading, Mass.: Addison-Wesley, 1995. 
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Table 5-2  Key Features of Patterns

Item Description

Name All patterns have a unique name that identifies 
them.

Intent The purpose of the pattern.

Problem The problem that the pattern is trying to solve.

Solution How the pattern provides a solution to the problem 

in the context in which it shows up.

Participants and
Collaborators

The entities involved in the pattern.

Consequences The consequences of using the pattern. Investi-

gates the forces at play in the pattern.

Implementation How the pattern can be implemented. 

Note: Implementations are just concrete manifesta-

tions of the pattern and should not be construed as 
the pattern itself.

GoF Reference Where to look in the Gang of Four text to get more 

information.

Consequences/Forces

The term consequences is used in design patterns and is often mis-

understood. In everyday usage, consequences usually carries a

negative connotation. (You never hear someone say, “I won the

lottery! As a consequence, I now do not have to go to work!”)

Within the design pattern community, on the other hand, conse-

quences simply refers to cause and effect. That is, if you imple-

ment this pattern in such-and-such a way, this is how it will

affect and be affected by the forces present. 
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Why Study Design Patterns? 

Design patterns help 

with reuse and 

communication

Now that you have an idea about what design patterns are, you

may still be wondering, “Why study them?”  There are several rea-

sons that are obvious and some that are not so obvious. 

The most commonly stated reasons for studying patterns are

because patterns allow us to:

• Reuse solutions—By reusing already established designs, I get a

head start on my problems and avoid gotchas. I get the benefit of

learning from the experience of others. I do not have to rein-

vent solutions for commonly recurring problems.

• Establish common terminology—Communication and teamwork

require a common base of vocabulary and a common viewpoint

of the problem. Design patterns provide a common point of ref-

erence during the analysis and design phase of a project. 

Design patterns give 

a higher perspective 

on analysis and 

design

However, there is a third reason to study design patterns: 

Patterns give you a higher-level perspective on the prob-

lem and on the process of design and object orientation.

This frees you from the tyranny of dealing with the

details too early. 

By the end of this book, I hope you will agree that this is one of the

greatest reasons to study design patterns. It will shift your mindset

and make you a more powerful analyst. 

To illustrate this advantage, I want to relate a conversation between

two carpenters about how to build the drawers for some cabinets.7 

7. This section is inspired by a talk given by Ralph Johnson and is adapted by the 
authors. 
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Example of the 

tyranny of details: 

carpenters making a 

set of drawers

Consider two carpenters discussing how to build the drawers for

some cabinets. 

Carpenter 1: How do you think we should build these

drawers?

Carpenter 2: Well, I think we should make the joint by

cutting straight down into the wood, and then cut back

up 45 degrees, and then going straight back down, and

then back up the other way 45 degrees, and then going

straight back down, and then . . .

Now, your job is to figure out what they are talking about!

The details may 

confuse the solution 

Isn’t that a confusing description? What is Carpenter 2 prescribing?

The details certainly get in the way! Let’s try to draw out his

description.

Carpenter 2 Says . . . Which Looks Like . . .

“Well, I think we should make the joint by cut-

ting straight down into the wood, and then cut 
back up 45 degrees . . .”

“. . . then going straight back down, and then 

back up the other way 45 degrees, and then 
going straight back down, and then . . .”

“. . . until you end up with a dovetail joint. That 

is what I was describing!”
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This sounds like so 

many code reviews: 

details, details, 

details

Doesn’t this sound like code reviews you have heard? The one

where the programmer describes the code in terms such as,

And then, I use a WHILE LOOP here to do . . . followed

by a series of IF statements to do . . . and here I use a

SWITCH to handle . . .

You get a description of the details of the code, but you have no

idea what the program is doing and why it is doing it! 

Carpenters do not 

really talk at that 

level of detail

Of course, no self-respecting carpenter would talk like this. What

would really happen is something like:

Carpenter 1: Should we use a dovetail joint or a miter

joint?

Already we see a qualitative difference. The carpenters are discuss-

ing differences in the quality of solutions to a problem; their discus-

sion is at a higher level, a more abstract level. They avoid getting

bogged down in the details of a particular solution. 

When the carpenter speaks of a miter joint, he or she has the fol-

lowing characteristics of the solution in mind:

• It is a simpler solution—A miter joint is a simple joint to make.

You cut the edges of the joining pieces at 45 degrees, abut

them, and then nail or glue them together (see Figure 5-2).

• It is lightweight—A miter joint is weaker than a dovetail. It can-

not hold together under great stress.

• It is inconspicuous—The miter joint’s single cut is much less

noticeable than the dovetail joint’s multiple cuts.
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Figure 5-2 A miter joint

When the carpenter speaks of a dovetail joint (which we described

how to make on page 81), he or she has other characteristics of the

solution in mind. These characteristics may not be obvious to a lay-

man, but would be clearly understood by any carpenter.

• It is a more complex solution—It is more involved to make a dove-

tail joint. Thus, it is more expensive.

• It is impervious to temperature and humidity—As these change, the

wood expands or contracts. However, the dovetail joint will

remain solid. 

• It is independent of the fastening system—In fact, dovetail joints do

not even depend upon glue to work. 

• It is a more aesthetically pleasing joint—It is beautiful to look at

when made well.

In other words, the dovetail joint is a strong, dependable, beautiful

joint that is complex (and therefore expensive) to make. 

There is a meta-level 

conversation going 

on

So, when Carpenter 1 asked, 

Should we use a dovetail joint or a miter joint?

the real question that was being asked was, 
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Should we use a joint that is expensive to make but is

both beautiful and durable, or should we just make a

quick and dirty joint that will last at least as long until

the check clears?

We might say the carpenters’ discussion really occurs at two levels:

the surface level of their words, and the real conversation, which

occurs at a higher level (a meta-level) that is hidden from the layman

and which is much richer in meaning. This higher level is the level

of “carpenter patterns” and reflects the real design issues for the

carpenters. 

In the first case, Carpenter 2 obscures the real issues by discussing

the details of the implementations of the joints. In the second case,

Carpenter 1 wants to decide which joint to use based on costs and

quality of the joint. 

Who is more efficient? Who would you rather work with?

Patterns help us see 

the forest and the 

trees

This is one thing I mean when I say that patterns can help raise the

level of your thinking. You will learn later in the book that when

you raise your level of thinking like this, new design methods

become available. This is where the real power of patterns lies.

Other Advantages to 
Studying Design Patterns

Improve team 

communications and 

individual learning

My experience with development groups working with design

patterns is that design patterns helped both individual learning

and team development. This occurred because the more junior

team members saw that the senior developers who knew design

patterns had something of value and these junior members

wanted it. This provided motivation for them to learn some of

these powerful concepts.
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Improved 

modifiability 

of code

Most design patterns also make software more modifiable. The rea-

son for this is that they are time-tested solutions. Therefore, they

have evolved into structures that can handle change more readily

than what often first comes to mind as a solution.

Design patterns 

illustrate basic 

object-oriented 

principles

Design patterns, when they are taught properly, can be used to

greatly increase the understanding of basic object-oriented design

principles. I have seen this countless times in the introductory

object-oriented courses I teach. In those classes, I start with a brief

introduction to the object-oriented paradigm. I then proceed to

teach design patterns, using them to illustrate the basic object-ori-

ented concepts (encapsulation, inheritance, and polymorphism).

By the end of the three-day course, although we’ve been talking

mostly about patterns, these concepts—which were just introduced

to many of the participants—feel like they are old friends.

Adoption of 

improved strategies—  

even when patterns 

aren’t present

The Gang of Four suggests a few strategies for creating good object-

oriented designs. In particular, they suggest the following: 

• Design to interfaces.

• Favor composition over inheritance.

• Find what varies and encapsulate it.

These strategies were employed in most of the design patterns dis-

cussed in this book. Even if you do not learn a lot of design pat-

terns, studying a few should enable you to learn why these

strategies are useful. With that understanding comes the ability to

apply them to your own design problems even if you do not use

design patterns directly.

Learn  alternatives to 

large inheritance 

hierarchies

Another advantage is that design patterns allow you or your team

to create designs for complex problems that do not require large

inheritance hierarchies. Again, even if design patterns are not used

directly, avoiding large inheritance hierarchies will result in

improved designs.
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Summary

In this chapter In this chapter, I described what design patterns are. Christopher

Alexander says “patterns are solutions to a problem in a context.”

They are more than a kind of template to solve one’s problems.

They are a way of describing the motivations by including both

what we want to have happen along with the problems that are

plaguing us.

I looked at reasons for studying design patterns. Such study helps to

• Reuse existing, high-quality solutions to commonly recurring

problems.

• Establish common terminology to improve communications

within teams.

• Shift the level of thinking to a higher perspective.

• Decide whether I have the right design, not just one that works.

• Improve individual learning and team learning.

• Improve the modifiability of code.

• Facilitate adoption of improved design alternatives, even when

patterns are not used explicitly. 

• Discover alternatives to large inheritance hierarchies.
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CHAPTER 6 

The Facade Pattern 

Overview 

I will start the study of design patterns with a pattern that you have 
probably implemented in the past but may not have had a name for: 
the Facade pattern. 

In this chapter, 

• I explain what the Facade pattern is and where it is used. 

• I present the key features of the pattern. 

• I present some variations on the Facade pattern. 

• I relate the Facade pattern to the CAD/CAM problem. 

Introducing the Facade Pattern 

According to Gang of Four, the intent of the Facade pattern is to: 

"Provide a unified interface to a set of interfaces in a sub-
system. Facade define s a higher-level interface that 
makes the subsystem easier to use." ' 

Basically, this is saying that we need a new way to interact with a 
system that is easier than the current way, or we need to use the 
system in a particular way (such as using a 3-D drawing program in a 
2-D way). We can build such a method of interaction because we 
only need to use a subset of the system in question. 

In this chapter 

Intent: a unified, 

high-level interface 

  

  

1.   Gamma, E., Helm, R., Johnson, R., Vlissides, J., Design Patterns: Elements of 
Reusable Object-Oriented Software, Reading, Mass.: Addison-Wesley, 1995, p. 185. 
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A motivating 
example: learn how 

to use our complex 

system! 

Learning the Facade Pattern 

Once, I worked as a contractor for a large engineering and manu-
facturing company. My first day on the job, the technical lead of the 
project was not in. Now, this client did not want to pay me by the 
hour and not have anything for me to do. They wanted me to be 
doing something, even if it was not useful! Haven't you had days 
like this? 

So, one of the project members found something for me to do. She 
said, "You are going to have to learn the CAD/CAM system we use 
some time, so you might as well start now. Start with these manuals 
over here." Then she took me to the set of documentation. I am not 
making this up: there were 8 feet of manuals for me to read . . . each 
page 81/2 x 11 inches and in small print! This was one complex system! 

  

 

Figure 6-1   Eight feet of manuals = one complex system! 

I want to be 

insulated from this 

Now, if you and I and say another four or five people were on a 
project that needed to use this system, not all of us would have to 
learn the entire thing. Rather than waste everyone's time, we 
would probably draw straws, and the loser would have to write rou-
tines that the rest of us would use to interface with the system. 
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This person would determine how I and others on our team were 
going to use the system and what API would be best for our partic -
ular needs. She would then create a new class or classes that had 
the interface we required. Then, I and the rest of the programming 
community could use this new interface without having to learn 
the entire complicated system (see Figure 6-2). 

 

Figure 6-2   Insulating clients from the subsystem. 

Now, this approach only works when using a subset of the system's 
capabilities or when interacting with it in a particular way. If every-
thing in the system needs to be used, it is unlikely that I can come up 
with a simpler interface (unless the original designers did a poor job). 

Works with subsets 

  

This is the Facade pattern. It enables us to use a complex system 
more easily, either to use just a subset of the system or use the system 
in a particular way. We have a complicated system of which we need 
to use only a part. We end up with a simpler, easier-to-use system or 
one that is customized to our needs. 

This is the Facade 
pattern  

Most of the work still needs to be done by the underlying system. 
The Facade provides a collection of easier-to-understand methods. 
These methods use the underlying system to implement the newly 
defined functions. 
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The Facade Pattern: Key Features 

Intent You want to simplify how to use an existing system. You need to define 
your own interface.  

  

Problem You need to use only a subset of a complex system. Or you need to inter-
act with the system in a particular way. 

  

Solution The Facade presents a new interface for the client of the existing system 
to use.  

  

Participants and 
Collaborators  

It presents a specialized interface to the client that makes it 
easier to use.  

Consequences The Facade simplifies the use of the required subsystem. However, since 
the Facade is not complete, certain functionality may be unavailable to the 
client. 

Implementation • Define a new class (or classes) that has the required interface.  
• Have this new class use the existing system. 

GoF Reference Pages 185-193.  

 
Figure 6-3   Standard, simplified view of the Facade pattern. 
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Field Notes: The Facade Pattern 

Facades can be used not only to create a simpler interface in terms 
of method calls, but also to reduce the number of objects that a client 
object must deal with. For example, suppose I have a Client object 
that must deal with Databases, Models, and Elements. The Client 
must first open the Database and get a Model. Then it queries the 
Model to get an Element. Finally, it asks the Element for 
information. It might be a lot easier to create a Database-Facade 
that could be queried by the Client (see Figure 6-4). 

Variations on 

Facade: reduce the 

number of objects a 
client must work 

with 

  

 

Figure 6-4   Facade reduces the number of objects for the client. 

Suppose that in addition to using functions that are in the system, I 
also need to provide some new functionality. In this case, I am 
going beyond a simple subset of the system. 

In this case, the methods I write for the Facade class may be supple -
mented by new routines for the new functionality. This is still the 
Facade pattern, but expanded with new functionality.  

Variations on 
Facade: supplement 

existing functions 

with new routines 
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The Facade pattern sets the general approach; it got me started. The 
Facade part of the pattern is the fact that I am creating a new interface 
for the client to use instead of the existing system's interface. I can do 
this because the Client object does not need to use all of the 
functions in my original system. 

Patterns set a general approach. 

A pattern just sets the general approach. Whether or not to add 
new functions depends upon the situation at hand. Patterns are 
blueprints to get you started; they are not carved in stone. 

Variations on 
Facade: an 

"encapsulating" 

layer 

The Facade can also be used to hide, or encapsulate, the system. 
The Facade could contain the system as private members of the 
Facade class. In this case, the or iginal system would be linked in 
with the Facade class, but not presented to users of the Facade class. 

There are a number of reasons to encapsulate the system: 

• Track system usage— By forcing all accesses to the system to go 
through the Facade, I can easily monitor system usage. 

• Swap out systems— I may need to change out systems in the 
future. By making the original system a private member of the 
Facade class, I can switch out the system for a new one with 
minimal effort. There may still be a significant amount of effort 
required, but at least I will only have to change the code in one 
place (the Facade class). 

  

Encapsulate the V1 
system 

Relating the Facade Pattern to 
the CAD/CAM Problem  

Think of the example above. The Facade pattern could be useful to 
help V1Slots, VlHoles, etc., use the V1System. I will do just that 
in the solution in Chapter 12, "Solving the CAD/CAM Problem 
with Patterns." 
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Summary  

The Facade pattern is so named because it puts up a new front (a    In this chapter 
facade) in front of the original system. 

The Facade pattern applies when 

• You do not need to use all of the functionality of a complex sys 
tem and can create a new class that contains all of the rules for 
accessing that system. If this is a subset of the original system, 
as it usually is, the API that you create in new class should be 
much simpler than the original system's API. 

• You want to encapsulate or hide the original system. 

• You want to use the functionality of the original system and 
want to add some new functionality as well. 

• The cost of writing this new class is less than the cost of every 
body learning how to use the original system or is less than you 
would spend on maintenance in the future. 



CHAPTER 7 

The Adapter Pattern 

Overview 

I will continue our study of design patterns with the Adapter pattern. 
The Adapter pattern is a very common pattern, and, as you will see, 
it is used with many other patterns. 

In this chapter, 

• I explain what the Adapter pattern is, where it is used, and how 
it is implemented. 

• I present the key features of the pattern. 

• I use the pattern to illustrate polymorphism. 

• I illustrate how the UML can be used at different levels of  
detail. 

• I present some observations on the Adapter pattern from my 
own practice, including a comparison of the Adapter pattern 
and the Facade pattern. 

• 
• I relate the Adapter pattern to the CAD/CAM problem. 

Note: I will only show Java code examples in the main body of this 
chapter. The equivalent C++ code examples can be found at the end 
of this chapter. 

In this chapter 
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Intent: create a new 

interface 

A motivating 

example: free the 

client object from 

knowing details 

Introducing the Adapter Pattern 

According to the Gang of Four, the intent of the Adapter pattern is to 

Convert the interface of a class into another interface 
that the clients expect. Adapter lets classes work together 
that could not otherwise because of incompatible inter-
faces.1 

Basically, this is saying that we need a way to create a new interface 
for an object that does the right stuff but has the wrong interface. 

Learning the Adapter Pattern 

The easiest way to understand the intent of the Adapter pattern is 
to look at an example of where it is useful. Let's say I have been 
given the following requirements: 

• Create classes for points,  lines,  and squares that have the  
behavior "display." 

• The client objects should not have to know whether they actu 
ally have a point, a line, or a square. They just want to know 
that they have one of these shapes. 

In other words, I want to encompass these specific shapes in a 
higher-level concept that I will call a "displayable shape." 

Now, as I work through this simple example, try to imagine other 
situations that you have run into that are similar, such as 

• You have wanted to use a subroutine or a method that some  
one else has written because it performs some function that 
you need. 

  

1.  Gamma, E., Helm, R., Johnson, R., Vlissides, J., Design Patterns: Elements of 
Reusable Object-Oriented Software, Reading, Mass.: Addison-Wesley, 1995, p. 185. 



Chapter 7    •   The Adapter Pattern       97 

• You cannot incorporate the routine directly into your program. 

• The interface or the way of calling the code is not exactly 

equivalent to the way that its related objects need to use it. 

In other words, although the system will have points, lines, and 
squares, I want the client objects to think I have only shapes. 

• This allows the client objects to deal with all these objects in the 
same way— freed from having to pay attention to their differences. 

• It also enables me to add different kinds of shapes in the future 
without having to change the clients (see Figure 7-1). 

 
Figure 7-1   The objects we have . . . should all look just like "shapes." 

I will make use of polymorphism; that is, I will have different    How to do this: 
objects in my system, but I want the clients of these objects to inter-    use derived classes 
act with them in a common way. polymorphically  

In this case, the client object will simply tell a point, line, or square to 
do something such as display itself or undisplay itself. Each point, line, 
and square is then responsible for knowing the way to carry out the 
behavior that is appropriate to its type. 

To accomplish this, I will create a Shape class and then derive from it 
the classes that represent points, lines, and squares (see Figure 7-2). 

. . . so that it can 
treat details in a 

common way 
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How to do this: 

define the interface 

and then implement 
in derived classes 

Figure 7-2   Points, Lines, and Squares are types of Shape.2 

First, I must specify the particular behavior that Shapes are going to 
provide. To accomplish this, I define an interface in the Shape class 
for the behavior and then implement the behavior appropriately in 
each of the derived classes. 

The behaviors that a Shape needs to have are: 
  

Now, add a new 

shape 

 

• Set a shape's location. 

• Get a Shape's location. 

• Display a Shape. 

• Fill a Shape. 

• Set the color of a Shape. 

• Undisplay a Shape. 

I show these in Figure 7-3. 

Suppose I am now asked to implement a circle, a new kind of 
Shape (remember, requirements always change!). To do this, I will 
want to create a new class— Circle— that implements the shape 
"circle" and derive it from the Shape class so that I can still get 
polymorphic behavior. 

2.  This and all other class diagrams in this book use the Unified Modeling Language 
(UML) notation. See Chapter 2, "The UML— The Unified Modeling Language," 
for a description of UML notation. 
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Figure 7-3   Points, Lines, and Squares showing methods. 

Now, I am faced with the task of having to write the display, fill 
and undisplay methods for Circle. That could be a pain.  

Fortunately, as I scout around for an alternative (as a good coder 
always should), I discover that Jill down the hall has already written 
a class she called xxcircle that deals with circles already (see 
Figure 7-4). Unfortunately, she didn't ask me what she should 
name the methods (and I did not ask her!). She named the methods 

• displayIt 

• fillIt 

• undisplayIt 

. . . but use behavior 

from outside 

 
Figure 7-4   Jill's XXCircle class. 
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/ cannot use 
xxcircle directly  

Rather than change 
it, I adapt it 

I cannot use XXCircle directly because I want to preserve poly -
morphic behavior with Shape. There are two reasons for this: 

• I have different names and parameter lists— The method names and 
parameter lists are different from Shape's method names and 
parameter lists. 

• I cannot derive it— Not only must the names be the same, but the 
class must be derived from Shape as well. 

It is unlikely that Jill will be willing to let me change the names of 
her methods or derive XXCircle from Shape. To do so would 
require her to modify all of the other objects that are currently 
using XXCircle. Plus, I would still be concerned about creating 
unanticipated side effects when I modify someone else's code. 

I have what I want almost within reach, but I cannot use it and I do 
not want to rewrite it. What can I do? 

I can make a new class that does derive from shape and therefore 
implements shape's interface but avoids rewriting the circle imple-
mentation in XXCircle (see Figure 7-5). 

• Class Circle derives from Shape. 

• Circle contains XXCircle. 

• Circle passes requests made to the Circle object on through 
to the XXCircle object. 

  

How to implement The diamond at the end of the line between Circle and xxcircle 
in Figure 7-5 indicates that Circle contains an xxcircle. When a 
Circle object is instantiated, it must instantiate a corresponding 
XXCircle object. Anything the Circle object is told to do will get 
passed on to the xxcircle object. If this is done consistently, and if 
the xxcircle object has the complete functionality the circle 
object needs (I will discuss shortly what happens if this is not the 
case), the Circle object will be able to manifest its behavior by let-
ting the XXCircle object do the job. 
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Figure 7-5   The Adapter pattern: Circle "wraps" XXCircle. 

An example of wrapping is shown in Example 7-1. 

Example 7-1 Java Code Fragments: Implementing the Adapter Pattern 

class Circle extends Shape 

{ private XXCircle pxc; 

public Circle () { pxc= new 
XXCircle(); 

} 

void public display() { 
pxc.displayIt(); } } 

Using the Adapter pattern allowed me to continue using polymor-
phism with Shape. In other words, the client objects of Shape do 
not know what types of shapes are actually present. This is also an 
example of our new thinking of encapsulation as well— the class 
Shape encapsulates the specific shapes present. The Adapter pattern 
is most commonly used to allow for polymorphism. As we shall 
see in later chapters, it is often used to allow for polymorphism 
required by other design patterns. 

What we 
accomplished 
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The Adapter Pattern: Key Features 

Intent Match an existing object beyond your control to a particular interface. 

Problem A system has the right data and behavior but the wrong interface. Typi- 
cally used when you have to make something a derivative of an abstract 
class we are defining or already have. 

Solution The Adapter provides a wrapper with the desired interface.  

Participants and The Adapter adapts the interface of an Adaptee to mat ch that of the 
Collaborators Adapter's Target (the class it derives from). This allows the Client  

to use the Adaptee as if it were a type of Target. 

Consequences The Adapter pattern allows for preexisting objects to fit into new class 
structures without being limited by their interfaces. 

Implementation Contain the existing class in another class. Have the containing class 
match the required interface and call the methods of the contained class. 

GoF Reference Pages 139-150. 

 

Figure 7-6   Standard, simplified view of the Adapter pattern. 
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Field Notes: The Adapter Pattern 

Often, I will be in a situation similar to the one above, but the object 
being adapted does not do all the things I need. 

In this case, I can still use the Adapter pattern, but it is not such a 
perfect fit. In this case, 

• Those functions that are implemented in the existing class can 
be adapted. 

• Those functions that are not present can be implemented in the 
wrapping object. 

This does not give me quite the same benefit, but at least I do not 
have to implement all of the required functionality. 

The Adapter pattern frees me from worrying about the interfaces of 
existing classes when I am doing a design. If I have a class that does 
what I need, at least conceptually, then I know that I can always use 
the Adapter pattern to give it the correct interface. 

This will become more important as you learn a few more patterns. 
Many patterns require certain classes to derive from the same class. 
If there are preexisting classes, the Adapter pattern can be used to 
adapt it to the appropriate abstract class (as Circle adapted 
XXCircle to Shape). 

There are actually two types of Adapter patterns: 

• Object Adapter pattern— The Adapter pattern I have been using is 
called an Object Adapter because it relies on one object (the 
adapting object) containing another (the adapted object). 

• Class Adapter pattern— Another way to implement the Adapter 
pattern is with multiple inheritance. In this case, it is called a 
Class Adapter pattern. 

You can do more 

than wrapping 

Adapter frees you 

from worrying about 

existing interfaces 

Variations: Object 

Adapter, Class 

Adapter 
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The decision of which Adapter pattern to use is based on the different 
forces at work in the problem domain. At a conceptual level, I may 
ignore the distinction; however, when it comes time to imple ment it, 
I need to consider more of the forces involved.3 

Comparing the 

Adapter with the 

Facade 

In my classes on design patterns, someone almost always states that 
it sounds as if both the Adapter pattern and the Facade pattern are 
the same. In both cases there is a preexisting class (or classes) that 
does have the interface that is needed. In both cases, I create a new 
object that has the desired interface (see Figure 7-7). 

 
which pattern? 

Figure 7-7   A Client object using another, preexisting object with the 

wrong interface. 

Both are wrappers Wrappers and object wrappers are terms that you hear a lot about. It 
is popular to think about wrapping legacy systems with objects to 
make them easier to use. 

At this high view, the Facade and the Adapter patterns do seem 
similar. They are both wrappers. But they are different kinds of 
wrappers. You need to understand the differences, which can be 
subtle. Finding and understanding these more subtle differences 
gives insight into a pattern's properties. Let's look at some different 
forces involved with these patterns (see Table 7-1). 

3.  For help in deciding between Object Adapter and Class Adapter, see pages 
142-144 in the Gang of Four book. 
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Table 7-1     Comparing the Facade Pattern with the Adapter Pattern  
 

 Facade  Adapter  

Are there preexisting classes?  Yes  Yes  

Is there an interface we must design to?  No  Yes  

Does an object need to behave polymorphically?  No  Probably  

Is a simpler interface needed?  Yes  No  

Table 7-1 tells us the following: 

• In both the Facade and Adapter pattern I have preexisting 
classes. 

• In the Facade, howeve r, I do not have an interface I must  
design to, as I do in the Adapter pattern. 

• I am not interested in polymorphic behavior in the Facade, 
while in the Adapter, I probably am. (There are times when we 
just need to design to a particular API and therefore must use 
an Adapter. In this case, polymorphism may not be an issue—  
that's why I say "probably"). 

• In the case of the Facade pattern, the motivation is to simplify 
the   interface. With the Adapter, while simpler is better, I am 
trying to design to an existing interface and cannot simplify 
things even if a simpler interface were otherwise possible. 

Sometimes people draw the conclusion that another difference 
between the Facade and the Adapter pattern is that the Facade 
hides multiple classes behind it while the Adapter only hides one. 
While this is often true, it is not part of the pattern. It is possible 
that a Facade could be used in front of a very complex object while an 
Adapter wrapped several small objects that between them 
implemented the desired function. 

Not all differences 

are part of the 

pattern  
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Adapter lets me 
communicate with 
OOGFeature 

Bottom line: A Facade simplifies an interface while an Adapter con-
verts the interface into a preexisting interface. 

Relating the Adapter Pattern to 
the CAD/CAM Problem 

In the CAD/CAM problem (Chapter 3, "A Problem That Cries Out 
for Flexible Code"), the features in the V2 model will be repre-
sented by OOGFeature objects. Unfortunately, these objects do not 
have the correct interface (from my perspective) because I did not 
design them. I cannot make them derive from the Feature classes, 
yet, when I use the V2 system, they would do our job perfectly. 

In this case, the option of writing new classes to implement this 
function is not even present— I must communicate with the 
OOGFeature objects. The easiest way to do this is with the Adapter 
pattern. 

Summary 

In this chapter The Adapter pattern is a very useful pattern that converts the inter- 
face of a class (or classes) into another interface, which we need the 
class to have. It is implemented by creating a new class with the 
desired interface and then wrapping the original class methods to 
effectively contain the adapted object. 
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Supplement: C++ Code Example 

Example 7 -2   C++ Code Fragments: Implementing the Adapter Pattern  

class  Circle   :   public  Shape   {  

private:  
XXCircle   *pxc; 

} 
Circle::Circle   ()    { 

pxc=  new XXCircle; 
} 
void Circle::display () 

{ pxc->displayIt(); 
} 



CHAPTER 8 

Expanding Our Horizons 

Overview 

In previous chapters, I discussed three fundamental concepts of 
object-oriented design: objects, encapsulation, and abstract classes. 
How a designer views these concepts is important. The traditional 
ways are simply too limiting. In this chapter I step back and reflect on 
topics discussed earlier in the book. My intent is to describe a new 
way of seeing object-oriented design, which comes from the 
perspective that design patterns create. 

In this chapter, 

• I compare and contrast the  traditional way of looking at 
objects— as a bundle of data and methods— with the new 
way— as things with responsibilities. 

• I compare and contrast the traditional way of looking at encap 
sulation— as hiding data— with the new way— as the ability to 
hide anything. Especially important is to see that encapsulation 
can be used to contain variation in behavior. 

• I compare and contrast the traditional way of using inherit 
ance— for specialization and reuse— with the new way— as a 
method of classifying objects. 

• The new viewpoints allow for containing variation of behaviors 
in objects. 

• I show how the conceptual, specification, and implementation 
perspectives relate to an abstract class and its derived classes. 

In this chapter 

109 
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Acknowledgment  Perhaps this new perspective is not all that original. I believe that 
this perspective is one that many developers of the design patterns 
held when they developed what ended up being called a pattern. 
Certainly, it is a perspective that is consistent with the writings of 
Christopher Alexander, Jim Coplien, and the Gang of Four. 

While it may not be original, it has also not been expressed in quite 
the way I do in this chapter and in this book. I have had to distill 
this way of looking at patterns from the way design patterns behave 
and how they have been described by others. 

When I call it a new perspective, what I mean is that it is most likely a 
new way for most developers to view object orientation. It was 
certainly new to me when I was learning design patterns for the 
first time. 

  

The traditional view: 

data with methods 

Objects: the Traditional View 
and the New View 

The traditional view of objects is that they are data with methods. 
One of my teachers called them "s mart data." It is just a step up 
from a database. This view comes from looking at objects from an 
implementation perspective. 

  

The new view: things 

with responsibilities 
While this definition is accurate, as explained in Chapter 1, "The 
Object-Oriented Paradigm," it is based on the implementation per-
spective. A more useful definition is one based on the conceptual 
perspective— an object is an entity that has responsibilities. These 
responsibilities give the object its behavior. Sometimes, I also think 
of an object as an entity that has specific behavior. 

This is a better definition because it helps to focus on what the 
objects are supposed to do, not simply on how to implement them. 
This enables me to build the software in two steps: 
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1. Make a preliminary design without worrying about all of the 
details involved. 

2. Implement the design achieved. 

Ultimately, this perspective allows for better object selection and 
definition (in a sense, the main point of design anyway). Object 
definition is more flexible; by focusing on what an object does, 
inheritance allows us to use different, specific behaviors when 
needed. A focus on implementation may achieve this, but flexibility 
typically comes at a higher price. 

It is easier to think in terms of responsibilities because that helps to 
define the object's public interface. If an object has a responsibility, 
there must be some way to ask it to perform its responsibility. How-
ever, it does not imply anything about what is inside the object. The 
information for which the object is responsible may not even be 
inside the object itself. 

For example, suppose I have a Shape object and its responsibilities 
are 

• To know where it is located 

• To be able to draw itself on a display 

• To be able to remove itself from a display 

These responsibilities imply that a particular set of method calls 
must exist: 

• getLocation(   . . .    ) 

• drawShape( . . . )  

• unDrawShape( . . . )  

There is no implication about what is inside of Shape. I only care 
that Shape is responsible for its own behaviors. It may have  
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attributes inside it or it may have methods that calculate or even 
refer to other objects. Thus, Shape might contain attributes about 
its location or it might refer to another database object to get its 
location. This gives you the flexibility you need to meet your mod-
eling objectives. 

Interestingly, you will find that focusing on motivation rather than 
on implementation is a recurring theme in design patterns. 

Look at objects this way. Make it your basic viewpoint for objects. If 
you do, you will have superior designs. 

My object-oriented 

umbrella 

Encapsulation: the Traditional View 
and the New View 

In my classes on pattern-oriented design, I often ask my students, 
"Who has heard encapsulation defined as 'data hiding'?" Almost 
everyone raises his or her hand. 

Then I proceed to tell a story about my umbrella. Keep in mind that I 
live in Seattle, which has a reputation for being wetter than it is, but 
is still a pretty wet place in the fall, winter, and spring. Here, 
umbrellas and hooded coats are personal friends! 

Let me tell you about my great umbrella. It is large enough to get 
into! In fact, three or four other people can get in it with me. While 
we are in it, staying out of the rain, I can move it from one place to 
another. It has a stereo system to keep me entertained while I stay 
dry. Amazingly enough, it can also condition the air to make it 
warmer or colder. It is one cool umbrella. 

My umbrella is convenient. It sits there waiting for me. It has 
wheels on it so that I do not have to carry it around. I don't even 
have to push it because it can propel itself. Sometimes, I will open 
the top of my umbrella to let in the sun. (Why I am using my 
umbrella when it is sunny outside is beyond me!) 
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In Seattle, there are hundreds of thousands of these umbrellas in all 
kinds of colors. 

Most people call them cars. 

But I think of mine as an umbrella because an umbrella is some thing 
you use to keep out of the rain. Many times, while I am wait ing 
outside for someone to meet me, I sit in my "umbrella" to stay dry! 

Of course, a car isn't really an umbrella. Yes, you can use it to say out 
of the rain, but that is too limited a view of a car. In the same way, 
encapsulation isn't just for hiding data. That is too limited a view of 
encapsulation. To think of it that way constrains my mind when I 
design. 

Encapsulation should be thought of as "any kind of hiding." In other 
words, it can hide data. But it can also hide implementations, derived 
classes, or any number of things. Consider the diagram shown in Fig-
ure 8-1. You might recollect this diagram from Chapter 7, "The 
Adapter Pattern." 

 
Figure 8 -1   Adapting XXCircle with Circle. 

Definitions can be 

limitations 

How to think about 

encapsulation 
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Multiple levels of 

encapsulation 

Figure 8-1 shows many kinds of encapsulation: 

• Encapsulation of data— The data in Point, Line, Square, and 
Circle are hidden from everything else. 

• Encapsulation of methods— For example, Circle's setLocation. 

• Encapsulation of subclasses— Clients of Shape do not see Points, 
Lines, Squares, or Circles.  

• Encapsulation of other objects— Nothing but Circle is aware of 
xxCircle. 

  

The advantage of 

this new definition  

One type of encapsulation is thus achieved when there is an 
abstract class that behaves polymorphically without the client of the 
abstract class knowing what kind of derived class actually is present. 
Furthermore, adapting interfaces hides what is behind the adapting 
object. 

The advantage of looking at encapsulation this way is that it gives 
me a better way to split up (decompose) my programs. The encap-
sulating layers become the interfaces I design to. By encapsulating 
different kinds of Shapes, I can add new ones without changing 
any of the client programs using them. By encapsulating XXCircle 
behind Circle, I can change this implementation in the future if I 
choose to or need to. 

  

Inheritance as a 
concept versus 

inheritance for 

reuse 

When the object-oriented paradigm was first presented, reuse of 
classes was touted as being one of its big benefits. This reuse was 
usually achieved by creating classes and then deriving new classes 
based on these base classes. Hence the term specialized classes for 
those subclasses that were derived from other classes (which were 
called generalized classes). 

I am not arguing with the accuracy of this, rather I am proposing 
what I believe to be a more powerful way of using inheritance. In 
the example above, I can do my design based on different special 
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types of Shapes (that is, Points, Lines, Squares and Circles). 
However, this will probably not have me hide these special cases 
when I think about using Shapes— I will probably take advantage 
of the knowledge of these concrete classes. 

If, however, I think about Shapes as a way of classifying Points, 
Lines, Squares and Circles, I can more easily think about them as 
a whole. This will make it more likely I will design to an inter face 
(Shapes). It also means if I get a new Shape, I will be less likely to 
have designed myself into a difficult maintenance position (because 
no client object knows what kind of Shape it is dealing with 
anyway).  

Find What Is Varying and Encapsulate It 

In Design Patterns: Elements of Reusable Object -Oriented Software, the 
Gang of Four suggests the following: 

Consider what should be variable in your design. This 
approach is the opposite of focusing on the cause of 
redesign. Instead of considering what might force a 
change to a design, consider what you want to be able to 
change without redesign. The focus here is on encapsulat-
ing the concept that varies, a theme of many design pat- 

Using inheritance 
this way in design 
patterns 

terns. 

Or, as I like to rephrase it, "Find what varies and encapsulate it." 

These statements seem odd if you only think about encapsulation 
as data-hiding. They are much more sensible when you think of 
encapsulation as hiding classes using abstract classes. Using compo-
sition of a reference to an abstract class hides the variations. 

1.   Gamma, E., Helm, R., Johnson, R., Vlissides, J., Design Patterns: Elements of 
Reusable Object-Oriented Software, Reading, Mass.: Addison-Wesley, 1995, p. 29. 
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Containing 

variation in data 

versus containing 
variation in 

behavior 

In effect, many design patterns use encapsulation to create layers 
between objects— enabling the designer to change things on differ-
ent sides of the layers without adversely affecting the other side. 
This promotes loose-coupling between the sides. 

This way of thinking is very important in the Bridge pattern, which 
will be discussed in Chapter 9, "The Bridge Pattern." However, 
before proceeding, I want to show a bias in design that many devel-
opers have. 

Suppose I am working on a project that models different character-
istics of animals. My requirements are the following: 

• Each type of animal can have a different number of legs. 

- Animal objects must be able to remember and retrieve this 
information. 

• Each type of animal can have a different type of movement. 

- Animal objects must be able to return how long it will take 
to move from one place to another given a specified type of 
terrain. 

A typical approach of handling the variation in the number of legs 
would be to have a data member containing this value and having 
methods to set and get it. However, one typically takes a different 
approach to handling variation in behavior. 

Suppose there are two different methods for moving: walking and 
flying. These requirements need two different pieces of code: one to 
handle walking and one to handle flying; a simple variable won't 
work. Given that I have two different methods, I seem to be faced 
with a choice of approach: 

• Having a data member that tells me what type of movement my 
object has. 
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• Having two different types of Animals (both derived from the 
base Animal class)— one for walking and one for flying. 

Unfortunately, both of these approaches have problems: 

• Tight coupling— The first approach (using a flag with presumably 
a switch based on it) may lead to tight coupling if the flag starts 
implying other differences. In any event, the code will likely be 
rather messy. 

• Too many details— The second approach requires that I also man 
age the subtype of Animal. And I cannot handle Animals that 
can both walk and fly. 

A third possibility exists: have the Animal class contain an object 
that has the appropriate movement behavior. I show this in Figure 
8-2. 

Handling variation 
in behavior with 

objects 

  

 

Figure 8-2   Animal containing A n i m a l M o v e m e n t  object. 

This may seem like overkill at first. However, it's nothing more 
than an Animal containing an object that contains the movement 
behavior of the Animal. This is very analogous to having a member 
containing the number of legs— in which case an intrinsic type 
object is containing the number of legs. I suspect these appear 
more different in concept than they really are, because Figures 8-2 
and 8-3 appear to be different. 

Overkill? 
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Figure 8-3   Showing containment as a member. 

Comparing the two Many developers tend to think that one object containing another 
object is inherently different from an object having a mere data 
member. But data members that appear not to be objects (integers 
and doubles, for example) really are. In object-oriented program-
ming, everything is an object, even these intrinsic data types, whose 
behavior is arithmetic. 

Using objects to contain variation in attributes and using objects to 
contain variation in behavior are very similar; this can be most easily 
shown through an example. Let's say I am writing a point-of-sale 
system. In this system, there is a sales receipt. On this sales receipt 
there is a total. I could start out by making this total be a type 
double. However, if I am dealing with an international application, I 
quickly realize I need to handle monetary conversions, and so forth. I 
might therefore make a Money class that contains an amount and a 
currency. Total can now be of type Money. 

Using the Money class this way appears to be using an object just to 
contain more data. However, when I need to convert Money from 
one currency to the next, it is the Money object itself that should do 
the conversion, because objects should be responsible for them-
selves. At first it may appear that this conversion can be done by 
simply having another data member that specifies what the conver-
sion factor is. 

However, it may be more complicated than this. For example, per-
haps I need to be able to convert currency based on past dates. In 
that case, if I add behaviors to the Money or Currency classes I am 
essentially adding different behaviors to the Sa lesReceipt as well, 
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based upon which Money objects (and therefore which Currency 
objects) it contains. 

I will demonstrate this strategy of using contained objects to perform 
required behavior in the next few design patterns. 

Commonality/Variability 
and Abstract Classes 

Consider Figure 8-4. It shows the relationship between 

• Commonality/variability analysis 

• The conceptual, specification, and implementation perspectives 

• An abstract class, its interface, and its derived classes 

Object-oriented 
design captures all 
three perspectives 

By looking at what these objects must do 
(conceptual perspective), we determine 
how to call them (specification 

perspective). 
When implementing these classes, ensure 
that the API provides sufficient information 
to enable proper implementation and 
decoupling. 

Figure 8-4   The relationship between commonality/variability analysis, 

perspectives, and abstract classes. 

As you can see in Figure 8-4, commonality analysis relates to the 
conceptual view of the problem domain and variability analysis 
relates to the implementation, that is, to specific cases. 
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Now, specification 
gives a better under-

standing of abstract 

classes 

The specification perspective lies in the middle. Both commonality 
and variability are involved in this perspective. The specification 
describes how to communicate with a set of objects that are concep-
tually similar. Each of these objects represents a variation of the 
common concept. This specification becomes an abstract class or an 
interface at the implementation level. 

In the new perspective of object-oriented design, I can now say the 
following: 

Mapping with 
Abstract Classes Discussion 
  

Abstract class — >the 
central binding concept 

Commonality — > which 
abstract classes to use 

Variations — > derivation 
of an abstract class 

An abstract class represents the core 
concept that binds together all of the deriva-
tives of the class. This core concept is what 
defines the commonality. 

The commonalities define the abstract 
classes I need to use. 

The variations identified within that com-
monality become derivations of the abstract 
classes. 

Specification — >interface      The interface for these classes corresponds 
for abstract class to the specification level. 

 
This simplifies the design process of the classes into a two-step pro-
cedure: 

When Defining . . .      You Must Ask Yourself... 

An abstract class 
(commonality) 

Derived classes  

What interface is needed to handle all of the 
responsibilities of this class? 

Given this particular implementation (this varia-
tion), how can I implement it with the given 
specification? 
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The relationship between the specification perspective and the con-
ceptual perspective is this: It identifies the interface I need to use to han dle 
all of the cases of this concept (that is, the commonality). 

The relationship between the specification perspective and the 
implementation perspective is this: Given this specification, how can I 
implement this particular case (this variation)? 

Summary 

The traditional way of thinking about objects, encapsulation, and 
inheritance is very limiting. Encapsulation exists for so much more 
than simply hiding data. By expanding the definition to include any 
kind of hiding, I can use encapsulation to create layers between 
objects— enabling me to change things on one side of a layer with-
out adversely affecting the other side. 

Inheritance is better used as a method of consistently dealing with 
different concrete classes that are conceptually the same rather 
than as a means of specialization. 

The concept of using objects to hold variations in behavior is not 
unlike the practice of using data members to hold variations in 
data. Both allow for the encapsulation (and therefore extension) of 
the data/behavior being contained.  

In this chapter 
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CHAPTER 9

The Bridge Pattern

Overview

In this chapterI will continue our study of design patterns with the Bridge pattern.

The Bridge pattern is quite a bit more complex than the other pat-

terns you just learned; it is also much more useful. 

In this chapter, 

• I derive the Bridge pattern by working through an example. I

will go into great detail to help you learn this pattern. 

• I present the key features of the pattern.

• I present some observations on the Bridge pattern from my

own practice.

Introducing the Bridge Pattern

Intent: decouple 

abstraction from 

implementation 

According to the Gang of Four, the intent of the Bridge pattern is to

“De-couple an abstraction from its implementation so that the two

can vary independently.”1

This is hard to 

understand

I remember exactly what my first thoughts were when I read this: 

Huh?

1. Gamma, E., Helm, R., Johnson, R., Vlissides, J., Design Patterns: Elements of 
Reusable Object-Oriented Software, Reading, Mass.: Addison-Wesley, 1995, p. 151.
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And then, 

How come I understand every word in this sentence but I have

no idea what it means?!

I knew that

• De-couple means to have things behave independently from each

other or at least explicitly state what the relationship is, and

• Abstraction is how different things are related to each other con-

ceptually. 

And I thought that implementations were the way to build the

abstractions; but I was confused about how I was supposed to sepa-

rate abstractions from the specific ways that implemented them. 

It turns out that much of my confusion was due to misunderstand-

ing what implementations meant. Implementations here means the

objects that the abstract class and its derivations use to implement

themselves with (not the derivations of the abstract class, which are

called concrete classes). But to be honest, even if I had understood

it properly, I am not sure how much it would have helped. The con-

cept expressed in this sentence is just hard to understand at first. 

If you are also confused about the Bridge pattern at this point, that

is okay. If you understand the stated intent, then you are that much

ahead. 

It is a challenging 

pattern to learn 

because it is so 

powerful

The Bridge pattern is one of the toughest patterns to understand in

part because it is so powerful and applies to so many situations.

Also, it goes against a common tendency to handle special cases

with inheritance. However, it is also an excellent example of fol-

lowing two of the mandates of the design pattern community: “find

what varies and encapsulate it” and “favor object composition over

class inheritance” (as you will see).
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Learning the Bridge Pattern: An Example

Learn why it exists, 

then derive the 

pattern

To learn the thinking behind the Bridge pattern and what it is try-

ing to do, I will work through an example from scratch. Starting

with requirements, I will derive the pattern and then see how to

apply it. 

Perhaps this example will seem basic. But look at the concepts dis-

cussed in this example and then try to think of situations that you

have encountered that are similar, having

• Variations in abstractions of a concept, and

• Variations in how these concepts are implemented.

You will see that this example has many similarities to the CAD/

CAM problem discussed earlier. But rather than give you all the

requirements up front, I am going to give them a little at a time,

just as they were given to me. You can’t always see the variations at

the beginning of the problem. 

Bottom line: During requirements definition, explore for varia-

tions early and often!

Start with a simple 

problem: drawing 

shapes

Suppose I have been given the task of writing a program that will

draw rectangles with either of two drawing programs. I have been

told that when I instantiate a rectangle, I will know whether I

should use drawing program 1 (DP1) or drawing program 2 (DP2). 

The rectangles are defined as two pairs of points, as represented in

Figure 9-1. The differences between the drawing programs are

summarized in Table 9-1.
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Figure 9-1 Positioning the rectangle.  

Proper use of 

inheritance

My customer told me that the collection (the client of the rectan-

gles) does not want to worry about what type of drawing program

it should use. It occurs to me that since the rectangles are told what

drawing program to use when instantiated, I can have two different

kinds of rectangle objects: one that uses DP1 and one that uses DP2.

Each would have a draw method but would implement it differ-

ently. I show this in Figure 9-2.

A note on the 

implementation

By having an abstract class Rectangle, I take advantage of the fact

that the only difference between the different types of Rectangles

are how they implement the drawLine method. The V1Rectangle

is implemented by having a reference to a DP1 object and using that

object’s draw_a_line method. The V2Rectangle is implemented by

having a reference to a DP2 object and using that object’s drawline

method. However, by instantiating the right type of Rectangle, I no

longer have to worry about this difference.

(x1, y2) (x2, y2)

(x1, y1) (x2, y1)

Table 9-1  Different Drawing Programs

DP1 DP2

Used to draw a line draw_a_line( x1, y1, x2, y2) drawline( x1, x2, y1, y2)

Used to draw a circle draw_a_circle( x, y, r) drawcircle( x, y, r)
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Figure 9-2 Design for rectangles and drawing programs 

(DP1 and DP2). 

Example 9-1 Java Code Fragments

class Rectangle {
  public void draw () {
     drawLine(_x1,_y1,_x2,_y1);
     drawLine(_x2,_y1,_x2,_y2);
     drawLine(_x2,_y2,_x1,_y2);
     drawLine(_x1,_y2,_x1,_y1);
   }
  abstract protected void  
    drawLine ( double x1, double y1, 
               double x2, double y2);
}

class V1Rectangle extends Rectangle {
  drawLine( double x1, double y1, 
            double x2, double y2) {
    DP1.draw_a_line( x1,y1,x2,y2);
  }
}
class V2Rectangle extends Rectangle {
  drawLine( double x1, double y1, 
            double x2, double y2) {
    // arguments are different in DP2
    // and must be rearranged
    DP2.drawline( x1,x2,y1,y2);
  }
}
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But, though 

requirements 

always change

Now, suppose that after completing this code, one of the inevitable

three (death, taxes, and changing requirements) comes my way. I am

asked to support another kind of shape—this time, a circle. However,

I am also given the mandate that the collection object does not want

to know the difference between Rectangles and Circles.

. . . I can still 

have a simple 

implementation

It occurs to me that I can simply extend the approach I’ve already

started by adding another level to my class hierarchy. I only need to

add a new class, called Shape, from which I will derive the Rect-

angle and Circle classes. This way, the Client object can just

refer to Shape objects without worrying about what kind of Shape

it has been given. 

Designing with 

inheritance

As a beginning object-oriented analyst, it might seem natural to

implement these requirements using only inheritance. For exam-

ple, I could start out with something like Figure 9-2, and then, for

each kind of Shape, implement the shape with each drawing pro-

gram, deriving a version of DP1 and a version of DP2 for Rectangle

and deriving a version of DP1 and a version of DP2 one for Circle.

I would end up with Figure 9-3. 

Figure 9-3 A straightforward approach: implementing two shapes and 

two drawing programs.

ch09.fm  Page 128  Friday, June 8, 2001  12:01 PM



Chapter 9 • The Bridge Pattern 129

I implement the Circle class the same way that I implemented the

Rectangle class. However, this time, I implement draw by using

drawCircle instead of drawLine.   

Example 9-2 Java Code Fragments 

abstract class Shape {
  abstract public void draw ();
}
abstract class Rectangle extends Shape {  
  public void draw () {
    drawLine(_x1,_y1,_x2,_y1);
    drawLine(_x2,_y1,_x2,_y2);
    drawLine(_x2,_y2,_x1,_y2);
    drawLine(_x1,_y2,_x1,_y1);
  }
  abstract protected void 
    drawLine(
      double x1, double y1,
      double x2, double y2);
}
class V1Rectangle extends Rectangle {
  protected void drawLine (
    double x1, double y1, 
    double x2, double y2) {
      DP1.draw_a_line( x1,y1,x2,y2);
  }  
}
class V2Rectangle extends Rectangle {
  protected void drawLine (
    double x1, double x2, 
    double y1, double y2) {
    DP2.drawline( x1,x2,y1,y2);
  }  
}
abstract class Circle { 
  public void draw () {
    drawCircle( x,y,r);
  }
  abstract protected void 
    drawCircle (
      double x, double y, double r);
}

(continued)
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Understanding the 

design

To understand this design, let’s walk through an example. Consider

what the draw method of  a V1Rectangle does. 

• Rectangle’s draw method is the same as before (calling draw-

Line four times as needed). 

• drawLine is implemented by calling DP1’s draw_a_line. 

In action, this looks like Figure 9-4. 

Figure 9-4 Sequence Diagram when have a V1Rectangle. 

class V1Circle extends Circle {
  protected void drawCircle() {
    DP1.draw_a_circle( x,y,r);
  }
}
class V2Circle extends Circle {
  protected void drawCircle() {
    DP2.drawcircle( x,y,r);
  }
}

Example 9-2 Java Code Fragments  (continued)
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Even though the Class Diagram makes it look like there are many

objects, in reality, I am only dealing with three objects (see Figure

9-5):

• The client using the rectangle

• The V1Rectangle object

• The DP1 drawing program

Reading a Sequence Diagram. 

As I discussed in Chapter 2, “The UML—The Unified Modeling

Language,” the diagram in Figure 9-4 is a special kind of interac-

tion diagram called a Sequence Diagram. It is a common diagram in

the UML. Its purpose is to show the interaction of objects in the

system. 

• Each box at the top represents an object. It may be named or

not. 

• If an object has a name, it is given to the left of the colon. 

• The class to which the object belongs is shown to the right of

the colon. Thus, the middle object is named myRectangle

and is an instance of V1Rectangle. 

You read the diagram from the top down. Each numbered state-

ment is a message sent from one object to either itself or to

another object. 

• The sequence starts out with the unnamed Client object

calling the draw method of myRectangle. 

• This method calls its own drawLine method four times

(shown in steps 2, 4, 6, and 8). Note the arrow pointing back

to the myRectangle in the timeline. 

• drawLine calls DP1’s draw_a_line. This is shown in steps 3,

5, 7 and 9.
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When the client object sends a message to the V1Rectangle object

(called myRectangle) to perform draw, it calls Rectangle’s draw

method resulting in steps 2 through 9. 

Figure 9-5 The objects present.

This solution suffers 

from combinatorial 

explosion

Unfortunately, this approach introduces new problems. Look at Fig-

ure 9-3 and pay attention to the third row of classes. Consider the

following:   

• The classes in this row represent the four specific types of

Shapes that I have. 

• What happens if I get another drawing program, that is,

another variation in implementation? I will have six different

kinds of Shapes (two Shape concepts times three drawing pro-

grams). 

• Imagine what happens if I then get another type of Shape,

another variation in concept. I will have nine different types of

Shapes (three Shape concepts times three drawing programs). 

. . . because of tight 

coupling 

The class explosion problem arises because in this solution, the

abstraction (the kinds of Shapes) and the implementation (the

drawing programs) are tightly coupled. Each type of shape must

know what type of drawing program it is using. I need a way to

separate the variations in abstraction from the variations in imple-

mentation so that the number of classes only grows linearly (see

Figure 9-6).

Client V1Rectangle DP1
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This is exactly the intent of the Bridge pattern: [to] de-couple an

abstraction from its implementation so that the two can vary inde-

pendently.2

Figure 9-6 The Bridge pattern separates variations in abstraction and 

implementation.

There are several 

other problems. Our 

poor approach to 

design gave us this 

mess!

Before showing a solution and deriving the Bridge pattern, I want to

mention a few other problems (beyond the combinatorial explosion). 

Looking at Figure 9-3, ask yourself what else is poor about this

design.

• Does there appear to be redundancy?  

• Would you say things have high cohesion or low cohesion?  

• Are things tightly or loosely coupled?  

• Would you want to have to maintain this code? 

2. Gamma, E., Helm, R., Johnson, R., Vlissides, J., Design Patterns: Elements of 
Reusable Object-Oriented Software, Reading, Mass.: Addison-Wesley, 1995, p. 151.

Abstraction 1

Abstraction 2

Abstraction 3
. . .

Implementation A
Implementation B

Implementation C

. . .

The overuse of inheritance. 

As a beginning object-oriented analyst, I had a tendency to solve

the kind of problem I have seen here by using special cases, tak-

ing advantage of inheritance. I loved the idea of inheritance

because it seemed new and powerful. I used it whenever I could.

This seems to be normal for many beginning analysts, but it is

naive: given this new “hammer,” everything seems like a nail. 
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An alternative 

approach

When I first looked at these problems, I thought that part of the dif-

ficulty might have been that I simply was using the wrong kind of

inheritance hierarchy. Therefore, I tried the alternate hierarchy

shown in Figure 9-7.

Not really a lot 

better, just bad 

in a different way

I still have the same four classes representing all of my possible

combinations. However, by first deriving versions for the different

drawing programs, I eliminated the redundancy between the DP1

and DP2 packages. 

Unfortunately, I am unable to eliminate the redundancy between

the two types of Rectangles and the two types of Circles, each

pair of which has the same draw method. 

In any event, the class explosion that was present before is still

present here.

Unfortunately, many approaches to teaching object-oriented

design focus on data abstraction—making designs overly based on

the “is-ness” of the objects. As I became an experienced object-

oriented designer, I was still stuck in the paradigm of designing

based on inheritance—that is, looking at the characteristics of my

classes based on their “is-ness.” Characteristics of objects should

be based on their responsibilities, not on what they might contain

or be. Objects, of course, may be responsible for giving informa-

tion about themselves; for example, a customer object may need

to be able to tell you its name. Think about objects in terms of

their responsibilities, not in terms of their structure.

Experienced object-oriented analysts have learned to use inherit-

ance selectively to realize its power. Using design patterns will

help you move along this learning curve more quickly. It

involves a transition from using a different specialization for each

variation (inheritance) to moving these variations into used or

owned objects (composition).
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Figure 9-7 An alternative implementation.

The sequence diagram for this solution is shown in Figure 9-8.

Figure 9-8 Sequence Diagram for new approach.
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It still has scaling 

problems

While this may be an improvement over the original solution, it still

has a problem with scaling. It also still has some of the original

cohesion and coupling problems. 

Bottom line: I do not want to have to maintain this version either!

There must be a better way. 

An Observation About 
Using Design Patterns

A new way to look at 

design  patterns

When people begin to look at design patterns, they often focus on

the solutions the patterns offer. This seems reasonable because they

are advertised as providing good solutions to the problems at hand. 

However, this is starting at the wrong end. When you learn patterns

by focusing on the solutions they present, it makes it hard to deter-

mine the situations in which a pattern applies. This only tells us

what to do but not when to use it or why to do it.

Look for alternatives in initial design. 

Although my alternative design here was not significantly better

than my original design, it is worth pointing out that finding

alternatives to an original design is a good practice. Too many

developers take what they first come up with and go with that. I

am not endorsing an in-depth study of all possible alternatives

(another way of getting “paralysis by analysis”). However, step-

ping back and looking at how we can overcome the design defi-

ciencies in our original design is a great practice. In fact, it was

just this stepping back, a refusal to move forward with a known,

poor design, that led me to understanding the powerful methods

of using design patterns that this entire book is about.
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I find it much more useful to focus on the context of the pattern—

the problem it is trying to solve. This lets me know the when and

the why. It is more consistent with the philosophy of Alexander’s

patterns: “Each pattern describes a problem which occurs over and

over again in the environment, and then describes the core of the

solution to that problem . . .”3 

What I have done here is a case in point. What is the problem being

solved by the Bridge pattern?

The Bridge pattern is useful when you have an abstraction that

has different implementations. It allows the abstraction and the

implementation to vary independently of each other. 

The characteristics of the problem fit this nicely. I can know that I

ought to be using the Bridge pattern even though I do not know yet

how to implement it.  Allowing for the abstraction to vary indepen-

dently from the implementation would mean I could add new

abstractions without changing my implementations and vice versa.

The current solution does not allow for this independent variation.

I can see that it would be better if I could create an implementation

that would allow for this. 

The bottom lineIt is very important to realize that, without even knowing how to

implement the Bridge pattern, you can determine that it would be

useful in this situation. You will find that this is generally true of

design patterns. That is, you can identify when to apply them to

your problem domain before knowing exactly how to implement

them. 

3. Alexander, C., Ishikawa, S., Silverstein, M., A Pattern Language: Towns/Buildings/
Construction, New York: Oxford University Press, 1977, p. x.
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Learning the Bridge Pattern: Deriving It

Deriving a solution Now that you have been through the problem, we are in a position

to derive the Bridge pattern together. Doing the work to derive the

pattern will help you to understand more deeply what this complex

and powerful pattern does. 

Let’s apply some of the basic strategies for good object-oriented

design and see how they help to develop a solution that is very

much like the Bridge pattern. To do this, I will be using the work of

Jim Coplien4 on commonality and variability analysis. 

First, use 

commonality/

variability analysis

Coplien’s work on commonality/variability analysis tells us how to

find variations in the problem domain and identify what is common

across the domain. Identify where things vary (commonality analy-

sis) and then identify how they vary (variability analysis). 

Design patterns are solutions 

that occur again and again.

Design patterns are solutions that have recurred in several problems

and have therefore proven themselves over time to be good solu-

tions. The approach I am taking in this book is to derive the pattern

in order to teach it so that you can understand its characteristics.

In this case, I know the pattern I want to derive—the Bridge pat-

tern—because I was shown it by the Gang of Four and have seen

how it works in my own problem domains. It is important to

note that patterns are not really derived. By definition, they must

be recurring—having been demonstrated in at least three inde-

pendent cases—to be considered patterns. What I mean by

“derive” is that we will go through a design process where you

create the pattern as if you did not know it. This is to illustrate

some key principles and  useful strategies.

4. Coplein, J., Multi-Paradigm Design for C++. Reading, Mass.: Addison-Wesley, 1998.
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CommonalityAccording to Coplien, “Commonality analysis is the search for com-

mon elements that helps us understand how family members are

the same.”5 Thus, the process of finding out how things are com-

mon defines the family in which these elements belong (and hence,

where things vary).

VariabilityVariability analysis reveals how family members vary. Variability

only makes sense within a given commonality. 

Commonality analysis seeks structure that is unlikely to

change over time, while variability analysis captures

structure that is likely to change. Variability analysis

makes sense only in terms of the context defined by the

associated commonality analysis . . . From an architectural

perspective, commonality analysis gives the architecture

its longevity; variability analysis drives its fitness for use.6

In other words, if variations are the specific concrete cases in the

domain, commonality defines the concepts in the domain that tie

them together. The common concepts will be represented by

abstract classes. The variations found by variability analysis will be

implemented by the concrete classes (that is, classes derived from

the abstract class with specific implementations). 

A new paradigm for 

finding objects

It is almost axiomatic with object-oriented design methods that the

designer is supposed to look in the problem domain, identify the

nouns present, and create objects representing them. Then, the

designer finds the verbs relating to those nouns (that is, their

actions) and implement them by adding methods to the objects.

This process of focusing on nouns and verbs typically leads to larger

class hierarchies than we might want. I suggest that using common-

ality/variability analysis as a primary tool in creating objects is a

better approach than looking at just nouns and verbs (actually, I

believe this is a restatement of Jim Coplien’s work). 

5. ibid, p. 63.
6. ibid, pp. 60, 64.
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Strategies to handle 

variations

There are two basic strategies to follow in creating designs to deal

with the variations: 

• Find what varies and encapsulate it.

• Favor composition over inheritance.

In the past, developers often relied on extensive inheritance trees to

coordinate these variations. However, the second strategy says to

try composition when possible. The intent of this is to be able to

contain the variations in independent classes, thereby allowing for

future variations without affecting the code. One way to do this is

to have each variation contained in its own abstract class and then

see how the abstract classes relate to each other. 

Try it: identify what 

is varying

Follow this process for the rectangle drawing problem. 

Reviewing encapsulation. 

Most object-oriented developers learned that “encapsulation” is

data-hiding. Unfortunately, this is a very limiting definition.

True, encapsulation does hide data, but it can be used in many

other ways. If you look back at Figure 7-2, you will see encapsu-

lation operates at many levels. Of course, it works at hiding data

for each of the particular Shapes. However, notice that the Client

object is not aware of the particular kinds of shapes. That is, the

Client object has no idea that the Shapes it is dealing with are

Rectangles and Circles. Thus, the concrete classes that Client

deals with are hidden (or encapsulated) from Client. This is the

kind of encapsulation that the Gang of Four is talking about

when they say, “find what varies and encapsulate it”. They are

finding what varies, and encapsulating it “behind” an abstract

class (see Chapter 8, “Expanding Our Horizons”).
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First, identify what it is that is varying. In this case, it is different

types of Shapes and different types of drawing programs. The com-

mon concepts are therefore shapes and drawing programs. I repre-

sent this in Figure 9-9 (note that the class names are shown in

italics because the classes are abstract).

Figure 9-9 What is varying.

At this point, I mean for Shape to encapsulate the concept of the

types of shapes that I have. Shapes are responsible for knowing

how to draw themselves. Drawing objects, on the other hand, are

responsible for drawing lines and circles. I represent these responsi-

bilities by defining methods in the classes.

Try it: represent the 

variations

The next step is to represent the specific variations that are present.

For Shape, I have rectangles and circles. For drawing programs, I

will have a program that is based on DP1 (V1Drawing) and one

based on DP2 (V2Drawing), respectively. I show this in Figure 9-10.

Figure 9-10 Represent the variations.
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At this point, the diagram is simply notional. I know that

V1Drawing will use DP1 and V2Drawing will use DP2 but I have

not said how. I have simply captured the concepts of the problem

domain (shapes and drawing programs) and have shown the varia-

tions that are present.

Tying the classes 

together: who uses 

whom?

Given these two sets of classes, I need to ask how they will relate to

one another. I do not want to come up with a new set of classes

based on an inheritance tree because I know what happens if I do

that (look at Figures 9-3 and 9-7 to refresh your memory). Instead,

I want to see if I can relate these classes by having one use the other

(that is, follow the mandate to favor composition over inheritance).

The question is, which class uses the other?  

Consider these two possibilities: either Shape uses the Drawing

programs or the Drawing programs use Shape.

Consider the latter case first. If drawing programs could draw

shapes directly, then they would have to know some things about

shapes in general: what they are, what they look like. But this vio-

lates a fundamental principle of objects: an object should only be

responsible for itself. 

It also violates encapsulation. Drawing objects would have to know

specific information about the Shapes (that is, the kind of Shape)

in order to draw them. The objects are not really responsible for

their own behaviors. 

Now, consider the first case. What if I have Shapes use Drawing

objects to draw themselves? Shapes wouldn’t need to know what

type of Drawing object it used since I could have Shapes refer to

the Drawing class. Shapes also would be responsible for controlling

the drawing. 
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This looks better to me. Figure 9-11 shows this solution.

Figure 9-11 Tie the classes together.

Expanding the 

design

In this design, Shape uses Drawing to manifest its behavior. I left

out the details of V1Drawing using the DP1 program and

V2Drawing using the DP2 program. In Figure 9-12, I add this as

well as the protected methods drawLine and drawCircle (in

Shape), which calls Drawing’s drawLine, and drawCircle,

respectively. 

Figure 9-12 Expanding the design.
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One rule, one place. 

A very important implementation strategy to follow is to have

only one place where you implement a rule. In other words, if

you have a rule how to do things, only implement that once. This

typically results in code with a greater number of smaller meth-

ods. The extra cost is minimal, but it eliminates duplication and

often prevents many future problems. Duplication is bad not

only because of the extra work in typing things multiple times,

but because of the likelihood of something changing in the future

and then forgetting to change it in all of the required places. 

While the draw method or Rectangle could directly call the

drawLine method of whatever Drawing object the Shape has, I

can improve the code by continuing to follow the one rule, one

place strategy and have a drawLine method in Shape that calls

the drawLine method of its Drawing object.

I am not a purist (at least not in most things), but if there is one

place where I think it is important to always follow a rule, it is

here. In the example below, I have a drawLine method in Shape

because that describes my rule of drawing a line with Drawing. I

do the same with drawCircle for circles. By following this strat-

egy, I prepare myself for other derived objects that might need to

draw lines and circles.

Where did the one rule, one place strategy come from? While

many have documented it, it has been in the folklore of object-

oriented designers for a long time. It represents a best practice of

designers. Most recently, Kent Beck called this the “once and

only once rule.”* 

* Beck, K., Extreme Programming Explained: Embrace Change, Reading, Mass.: 
Addison Wesley, 2000, pp. 108–109.
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The pattern 

llustrated

Figure 9-13 illustrates the separation of the Shape abstraction from

the Drawing implementation. 

Figure 9-13 Class diagram illustrating separation of abstraction and 

implementation.

Relating this to the 

inheritance-based 

design

From a method point of view, this looks fairly similar to the inherit-

ance-based implementation (such as shown in Figure 9-3). The big-

gest difference is that the methods are now located in different

objects.

He defines it as part of his constraints:

• The system (code and tests together) must communicate

everything you want to communicate.

• The system must contain no duplicate code. (1 and 2

together constitute the Once and Only Once rule).
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I said at the beginning of this chapter that my confusion over the

Bridge pattern was due to my misunderstanding of the term

“implementation.” I thought that implementation referred to how I

implemented a particular abstraction. 

The Bridge pattern let me see that viewing the implementation as

something outside of my objects, something that is used by the

objects, gives me much greater freedom by hiding the variations in

implementation from my calling program. By designing my objects

this way, I also noticed how I was containing variations in separate

class hierarchies. The hierarchy on the left side of Figure 9-13 con-

tains the variations in my abstractions. The hierarchy on the right

side of Figure 9-13 contains the variations in how I will implement

those abstractions. This is consistent with the new paradigm for cre-

ating objects (using commonality/variability analysis) that I men-

tioned earlier. 

From an object 

perspective

It is easiest to visualize this when you remember that there are only

three objects to deal with at any one time, even though there are

several classes (see Figure 9-14).

Figure 9-14 There are only three objects at a time.
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Code examplesA reasonably complete code example is shown in Example 9-3 for

Java and in the Examples beginning on page 157 for C++. 

 
Example 9-3 Java Code Fragments 

class Client {
  public static void main 
    (String argv[]) {
      Shape r1, r2;
      Drawing dp;

      dp= new V1Drawing();
      r1= new Rectangle(dp,1,1,2,2);

      dp= new V2Drawing ();
      r2= new Circle(dp,2,2,3);

      r1.draw();
      r2.draw();
   }
}

abstract class Shape {
  abstract public draw() ;
  private Drawing _dp;

  Shape (Drawing dp) {
    _dp= dp;
  }
  public void drawLine (
    double x1,double y1,
    double x2,double y2) {
      _dp.drawLine(x1,y1,x2,y2);
  }

  public void drawCircle (
    double x,double y,double r) {
      _dp.drawCircle(x,y,r);
  }
}

abstract class Drawing {
  abstract public void drawLine ( 
    double x1, double y1,
    double x2, double y2);  

(continued)
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  abstract public void drawCircle (
    double x,double y,double r);
}

class V1Drawing extends Drawing {
  public void drawLine (
    double x1,double y1, 
    double x2,double y2) {
    DP1.draw_a_line(x1,y1,x2,y2);
  }
  public void drawCircle (
    double x,double y,double r) {
    DP1.draw_a_circle(x,y,r);
  }
}

class V2Drawing extends Drawing {
  public void drawLine (
    double x1,double y1, 
    double x2,double y2) {
    // arguments are different in DP2
    // and must be rearranged
    DP2.drawline(x1,x2,y1,y2);
  }
  public void drawCircle (
    double x, double y,double r) {
    DP2.drawcircle(x,y,r);
  }
}

class Rectangle extends Shape {
  public Rectangle (
    Drawing dp, 
    double x1,double y1,
    double x2,double y2) {
      super( dp) ;
      _x1= x1; _x2= x2 ;
      _y1= y1; _y2= y2;
  }

  public void draw () {
   drawLine(_x1,_y1,_x2,_y1);
   drawLine(_x2,_y1,_x2,_y2);

(continued)

Example 9-3 Java Code Fragments  (continued)
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   drawLine(_x2,_y2,_x1,_y2);
   drawLine(_x1,_y2,_x1,_y1);
  }
}

class Circle extends Shape {
  public Circle (
    Drawing dp, 
    double x,double y,double r) {
      super( dp) ;
      _x= x; _y= y; _r= r ;
  }

  public void draw () {
   drawCircle(_x,_y,_r);
  }
}

// We’ve been given the implementations for DP1 and DP2

class DP1 {
  static public void draw_a_line ( 
    double x1,double y1, 
    double x2,double y2) {   
      // implementation
  }
  static public void draw_a_circle( 
    double x,double y,double r) {    
      // implementation
  } 
}

class DP2 {
  static public void drawline ( 
    double x1,double x2, 
    double y1,double y2) {
      // implementation
  }
  static public void drawcircle ( 
    double x,double y,double r) {    
    // implementation
   }
}

Example 9-3 Java Code Fragments  (continued)
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The Bridge Pattern in Retrospect

The essence of the 

pattern

Now that you’ve seen how the Bridge pattern works, it is worth

looking at it from a more conceptual point of view. As shown in

Figure 9-13, the pattern has an abstraction part (with its deriva-

tions) and an implementation part. When designing with the

Bridge pattern, it is useful to keep these two parts in mind. The

implementation’s interface should be designed considering the dif-

ferent derivations of the abstract class that it will have to support.

Note that a designer shouldn’t necessarily put in an interface that

will implement all possible derivations of the abstract class (yet

another possible route to paralysis by analysis). Only those deriva-

tions that actually are being built need be supported. Time and time

again, the authors have seen that the mere consideration of flexibil-

ity at this point often greatly improves a design.

Note: In C++, the Bridge pattern’s implementation must be imple-

mented with an abstract class defining the public interface. In Java,

either an abstract class or an interface can be used. The choice

depends upon whether implementations share common traits that

abstract classes can take advantage of. See Peter Coad’s Java Design,

discussed on page 316 of the Bibliography, for more on this.

Field Notes: Using the Bridge Pattern

The Bridge pattern 

often incorporates 

the Adapter pattern

Note that the solution presented in Figures 9-12 and 9-13 integrates

the Adapter pattern with the Bridge pattern. I do this because I was

given the drawing programs that I must use. These drawing pro-

grams have preexisting interfaces with which I must work. I must

use the Adapter to adapt them so that they can be handled in the

same way. 

While it is very common to see the Adapter pattern incorporated

into the Bridge pattern, the Adapter pattern is not part of the Bridge

pattern.  
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The Bridge Pattern: Key Features

Intent Decouple a set of implementations from the set of objects using them.

Problem The derivations of an abstract class must use multiple implementations 
without causing an explosion in the number of classes.

Solution Define an interface for all implementations to use and have the deriva-

tions of the abstract class use that. 

Participants and 

Collaborators

The Abstraction defines the interface for the objects being 

implemented. The Implementor defines the interface for the specific 
implementation classes. Classes derived from the Abstraction use 

classes derived from the Implementor without knowing which particu-

lar ConcreteImplementor is in use.

Consequences The decoupling of the implementations from the objects that use them 
increases extensibility. Client objects are not aware of implementation 

issues.

Implementation • Encapsulate the implementations in an abstract class.

• Contain a handle to it in the base class of the abstraction being imple-
mented. 

Note: In Java, you can use interfaces instead of an abstract class for the 

implementation.

GoF Reference Pages 151–162.

Figure 9-15 Standard, simplified view of the Bridge pattern.
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Compound design 

patterns

When two or more patterns are tightly integrated (like my Bridge

and Adapter), the result is called a composite design pattern.7,8 It is

now possible to talk about patterns of patterns!

Instantiating the 

objects of the Bridge 

pattern

Another thing to notice is that the objects representing the abstrac-

tion (the Shapes) were given their implementation while being

instantiated. This is not an inherent part of the pattern, but it is very

common.  

Now that you understand the Bridge pattern, it is worth reviewing

the Gang of Four’s Implementation section in their description of

the pattern. They discuss different issues relating to how the

abstraction creates and/or uses the implementation. 

An advantage of 

Java over C++ in the 

Bridge pattern

Sometimes when using the Bridge pattern, I will share the imple-

mentation objects across several abstraction objects. 

• In Java, this is no problem; when all the abstraction objects go

away, the garbage collector will realize that the implementation

objects are no longer needed and will clean them up. 

• In C++, I must somehow manage the implementation objects.

There are many ways to do this; keeping a reference counter or

even using the Singleton pattern are possibilities. It is nice,

however, not to have to consider this effort. This illustrates

another advantage of automatic garbage collection.

7. Compound design patterns used to be called composite design patterns, but are 
now called compound design patterns to avoid confusion with the composite 
pattern.

8. For more information, refer to Riehle, D., “Composite Design Patterns,” In, 
Proceedings of the 1997 Conference on Object-Oriented Programming Systems, Languages 
and Applications (OOPSLA ‘97), New York: ACM Press, 1997, pp. 218–228. Also 
refer to “Composite Design Patterns (They Aren’t What You Think),” C++ Report, 
June 1998.
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The Bridge pattern 

solution is good, but 

not always perfect

While the solution I developed with the Bridge pattern is far supe-

rior to the original solution, it is not perfect. One way of measuring

the quality of a design is to see how well it handles variation. Han-

dling a new implementation is very easy with a Bridge pattern in

place. The programmer simply needs to define a new concrete

implementation class and implement it.  Nothing else changes.

However, things may not go so smoothly if I get a new concrete

example of the abstraction. I may get a new kind of Shape that can

be implemented with the implementations already in the design.

However, I may also get a new kind of Shape that requires a new

drawing function. For example, I may have to implement an

ellipse. The current Drawing class does not have the proper method

to do ellipses. In this case, I have to modify the implementations.

However, even if this occurs, I at least have a well-defined process

for making these changes (that is, modify the interface of the Draw-

ing class or interface, and modify each Drawing derivative accord-

ingly)—this localizes the impact of the change and lowers the risk

of an unwanted side effect.

Bottom line: Patterns do not always give perfect solutions. How-

ever, because patterns represent the collective experience of many

designers over the years, they are often better than the solutions

you or I might come up with on our own. 

Follow one rule, one 

place to help with 

refactoring

In the real world, I do not always start out with multiple implemen-

tations. Sometimes, I know that new ones are possible, but they

show up unexpectedly. One approach is to prepare for multiple

implementations by always using abstractions. You get a very

generic application.

But I do not recommend this approach. It leads to an unnecessary

increase in the number of classes you have. It is important to write

code in such a way that when multiple implementations do occur

(which they often will), it is not difficult to modify the code to
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incorporate the Bridge pattern. Modifying code to improve its struc-

ture without adding function is called refactoring.  As defined by

Martin Fowler, “Refactoring is the process of changing a software

system in such a way that it does not alter the external behavior of

the code yet improves its internal structure.”9  

In designing code, I was always attending to the possibility of refac-

toring by following the one rule, one place mandate. The drawLine

method was a good example of this. Although the place the code

was actually implemented varied, moving it around was fairly easy. 

A useful way to look 

at the bridge pattern

While deriving the pattern, I took the two variations present

(shapes and drawing programs) and encapsulated each in their own

abstract class. That is, the variations of shapes are encapsulated in

the Shape class, the variations of drawing programs are encapsu-

lated in the Drawing class. 

Stepping back and looking at these two polymorphic structures, I

should ask myself, “What do these abstract classes represent?” For

the shapes, it is pretty evident that the class represents different kinds

of shapes. The Drawing abstract class represents how I will imple-

ment the Shapes. Thus, even in the case where I described how new

requirements for the Drawing class may arise (say, if I need to imple-

ment ellipses) there is a clear relationship between the classes.

9. Fowler, M., Refactoring: Improving the Design of Existing Code, Reading, Mass.: 
Addison-Wesley, 2000, p. xvi.

Refactoring. 

Refactoring is commonly used in object-oriented design. How-

ever, it is not strictly an OO thing . . . It is modifying code to

improve its structure without adding function.
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Summary

In this chapterIn learning the Bridge pattern, I looked at a problem where there

were two variations in the problem domain—shapes and drawing

programs. In the problem domain, each of these varied. The chal-

lenge came in trying to implement a solution based on all of the

special cases that existed. The initial solution, which naively used

inheritance too much, resulted in a redundant design that had tight

coupling and low cohesion, and was thus difficult to maintain.

You learned the Bridge pattern by following the basic strategies for

dealing with variation:  

• Find what varies and encapsulate it.

• Favor composition over inheritance.

Finding what varies is always a good step in learning about the

problem domain. In the drawing program example, I had one set of

variations using another set of variations. This indicates that the

Bridge pattern will probably be useful. 

In general, you should identify which patterns to use by matching

them with the characteristics and behaviors in the problem domain.

By understanding the whys and whats of the patterns in your reper-

toire, you can be more effective in picking the ones that will help

you. You can select patterns to use before deciding how the pat-

tern’s implementation will be done.

By using the Bridge pattern, the design and implementation are

more robust and better able to handle changes in the future.

Summary of object-

oriented principles 

used in the Bridge 

pattern

While I focused on the pattern during the chapter, it is worth point-

ing out several object-oriented principles that are used in the Bridge

pattern. 
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Concept Discussion

Objects are responsible for 
themselves

I had different kinds of Shapes, but all drew themselves (via the 
draw method). The Drawing classes were responsible for draw-

ing elements of objects.

Abstract class I used abstract classes to represent the concepts. I actually had 
rectangles and circles in the problem domain. The concept 

“Shape” is something that lives strictly in our head, a device to bind 

the two concepts together; therefore, I represent it in the Shape 
class as an abstract class. Shape will never get instantiated 

because it never exists in the problem domain (only Rectangles 

and Circles do).  The same thing is true with drawing programs. 

Encapsulation via an 

abstract class

I have two examples of encapsulation through the use of an 

abstract class in this problem.

• A client dealing with the Bridge pattern will have only a derivation 
of Shape visible to it. However, the client will not know what type 

of Shape it has (it will be just a Shape to the client). Thus, I  have 

encapsulated this information. The advantage of this is if a new 
type of Shape is needed in the future, it does not affect the client 

object. 

• The Drawing class hides the different drawing derivations from 
the Shapes. In practice, the abstraction may know which imple-

mentation it uses because it might instantiate it. See page 155 of 

the Gang of Four book for an explanation as to why this might be 
a good thing to do. However, even when that occurs, this knowl-

edge of implementations is limited to the abstraction’s constructor 

and is easily changed.

One rule, one place The abstract class often has the methods that actually use the 

implementation objects. The derivations of the abstract class call 

these methods. This allows for easier modification if needed, and 
allows for a good starting point even before implementing the entire 

pattern.
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Supplement: C++ Code Examples

Example 9-4 C++ Code Fragments: Rectangles Only

void Rectangle::draw () {
   drawLine(_x1,_y1,_x2,_y1);
   drawLine(_x2,_y1,_x2,_y2);
   drawLine(_x2,_y2,_x1,_y2);
   drawLine(_x1,_y2,_x1,_y1);
}

void V1Rectangle::drawLine
   (double x1, double y1, 
    double x2, double y2) {
    DP1.draw_a_line(x1,y1,x2,y2);
}

void V2Rectangle::drawLine
   (double x1, double y1, 
    double x2, double y2) {
    DP2.drawline(x1,x2,y1,y2);
}

Example 9-5 C++ Code Fragments: 

Rectangles and Circles without Bridge

class Shape {
  public: void draw ()=0;
}
class Rectangle : Shape {
  public: 
    void draw();
  protected:
    void drawLine(
        double x1,y1, x2,y2)=0;
}
void Rectangle::draw () {
  drawLine(_x1,_y1,_x2,_y1);
  drawLine(_x2,_y1,_x2,_y2);
  drawLine(_x2,_y2,_x1,_y2);
  drawLine(_x1,_y2,_x1,_y1);
}

(continued)
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// V1Rectangle and V2Rectangle both derive from 
// Rectangle header files not shown
void V1Rectangle::drawLine (
  double x1,y1, x2,y2) {
  DP1.draw_a_line(x1,y1,x2,y2);
}
void V2Rectangle::drawLine (
   double x1,y1, x2,y2) {
   DP2.drawline(x1,x2,y1,y2);
   }
}

class Circle : Shape {
  public: 
    void draw() ;
  protected:
    void drawCircle(
      double x, y, z) ;
}
void Circle::draw () {
  drawCircle();

}

// V1Circle and V2Circle both derive from Circle
// header files not shown
void V1Circle::drawCircle (
  DP1.draw_a_circle(x, y, r);
}

void V2Circle::drawCircle (
  DP2.drawcircle(x, y, r);
}

Example 9-5 C++ Code Fragments: 

Rectangles and Circles without Bridge (continued)
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Example 9-6 C++ Code Fragments: 

The Bridge Implemented

void main (String argv[]) {
  Shape *s1;
  Shape *s2;
  Drawing *dp1, *dp2;

  dp1= new V1Drawing;
  s1=new Rectangle(dp,1,1,2,2);

  dp2= new V2Drawing;
  s2= new Circle(dp,2,2,4);

  s1->draw();       
  s2->draw();

  delete s1; delete s2;   
  delete dp1; delete dp2;
}

// NOTE: Memory management not tested.
// Includes not shown.

class Shape {
  public: draw()=0;
  private: Drawing *_dp;
}
Shape::Shape (Drawing *dp) {
  _dp= dp;
}
void Shape::drawLine(
  double x1, double y1, 
  double x2, double y2)
    _dp->drawLine(x1,y1,x2,y2);
}

Rectangle::Rectangle (Drawing *dp, 
  double x1, y1, x2, y2) :
  Shape( dp) {
  _x1= x1; _x2= x2; 
  _y1= y1; _y2= y2;
}

(continued)
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void Rectangle::draw () {
  drawLine(_x1,_y1,_x2,_y1);
  drawLine(_x2,_y1,_x2,_y2);
  drawLine(_x2,_y2,_x1,_y2);
  drawLine(_x1,_y2,_x1,_y1);
}
class Circle { 
  public: Circle (
      Drawing *dp, 
      double x, double y, double r);
};

Circle::Circle (
    Drawing *dp, 
    double x, double y, 
    double r) : Shape(dp) {
    _x= x; 
    _y= y;
    _r= r;
}

Circle::draw () {
    drawCircle( _x, _y, _r);
}

class Drawing {
  public: virtual void drawLine (
      double x1, double y1,
      double x2, double y2)=0;
};

class V1Drawing : 
  public Drawing {
    public: void drawLine (
        double x1, double y1, 
        double x2, double y2); 
      void drawCircle(
        double x, double y, double r);
};

void V1Drawing::drawLine (    
  double x1, double y1,
  double x2, double y2) { 
  DP1.draw_a_line(x1,y1,x2,y2); 
}

(continued)

Example 9-6 C++ Code Fragments: 

The Bridge Implemented (continued)
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void V1Drawing::drawCircle (
   double x1, double y, double r) {
     DP1.draw_a_circle (x,y,r);
}
class V2Drawing : public 
   Drawing {
   public:  
     void drawLine (
       double x1, double y1, 
       double x2, double y2); 
     void drawCircle( 
       double x, double y, double r);
};
void V2Drawing::drawLine (
  double x1, double y1,
  double x2, double y2) {
    DP2.drawline(x1,x2,y1,y2);
}

void V2Drawing::drawCircle (
  double x, double y, double r) {
    DP2.drawcircle(x, y, r);
}

// We have been given the implementations for 
// DP1 and DP2

class DP1 {
  public:
    static void draw_a_line (
      double x1, double y1,
      double x2, double y2);
    static void draw_a_circle (
      double x, double y, double r);
};

class DP2 {
  public:
    static void drawline (
      double x1, double x2,
      double y1, double y2);
    static void drawcircle (
      double x, double y, double r);
};

Example 9-6 C++ Code Fragments: 

The Bridge Implemented (continued)
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CHAPTER 10 

The Abstract Factory Pattern 

Overview 

I will continue our study of patterns with the Abstract Factory pat-
tern, which is used to create families of objects. 

In this chapter, 

• I derive the pattern by working through an example. 

• I present the key features of the Abstract Factory pattern. 

• I relate the Abstract Factory pattern to the CAD/CAM problem. 

In this chapter 

  

Introducing the Abstract 
Factory Pattern 

According to the Gang of Four, the intent of the Abstract Factory 
pattern is to "provide an interface for creating families of related or 
dependent objects without specifying their concrete classes."1 

Sometimes, several objects need to be instantiated in a coordinated 
fashion. For example, when dealing with user interfaces, the sys tem 
might need to use one set of objects to work on one operating system 
and another set of objects to work on a different operating system. 
The Abstract Factory pattern ensures that the system always gets 
the correct objects for the situation. 

Intent: coordinate 
the instantiation of 

objects 

  

  

1.  Gamma, E., Helm, R., Johnson, R., Vlissides, J., Design Patterns: Elements of 
Reusable Object-Oriented Software, Reading, Mass.: Addison-Wesley, 1995, p. 87. 
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A motivating 
example: select 

device drivers 
according to the 

machine capacity 

Learning the Abstract Factory Pattern: An 
Example 

Suppose I have been given the task of designing a computer system 
to display and print shapes from a database. The type of resolution to 
use to display and print the shapes depends on the computer that the 
system is currently running on: the speed of its CPU and the amount 
of memory that it has available. My system must be careful about 
how much demand it is placing on the computer. 

The challenge is that my system must control the drivers that it is 
using: low-resolution drivers in a less-capable machine and 
high-resolution drivers in a high-capacity machine, as shown in 
Table 10-1. 

Table 1O-1     Different Drivers for Different Machines 

For driver... In a low-capacity machine, use...       In a high-capacity machine, use... 

Display 

Print 

LRDD 
Low-resolution display driver 

LRPD 
Low-resolution print driver 

HRDD 
High-resolution display driver 

HRPD 
High-resolution print driver 

Define families based     In this example, the families of drivers are mutually exclusive, but 
on a unifying concept    this is not usually the case. Sometimes, different families will con-

tain objects from the same classes. For example,  a mid-range machine might use a 
low-resolution display driver (LRDD) and a high-resolution print driver (HRPD). 

The families to use are based on the problem domain: which sets of 
objects are required for a given case? In this case, the unifying con-
cept focuses on the demands that the objects put on the system: 

• A low-resolution family— LRDD and LRPD, those drivers that put 
low demands on the system 
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A high-resolution family— HRDD and HRPD, those drivers that put 
high demands on the system 

My first attempt might be to use a switch to control the selection of    Alternative 1: use a 
driver, as shown in Example 10-1.  switch to select the  

driver 

Example 1O-1   Java Code Fragments: A 
Switch to Control Which Driver to Use 

//   JAVA  CODE   FRAGMENT  

class  ApControl   { 
•  •  •  
void doDraw   ()  { 

switch (RESOLUTION){  

case LOW: 
// use lrdd 

case HIGH: 
// use hrdd 

  } 
} 
void doPrint () { 

•  •   •  
switch (RESOLUTION) { 
case LOW: 
// use lrpd  
case HIGH:  
// use hrpd 

 } 
  } 

} 

While this does work, it presents problems. The rules for determining     
which driver to use are intermixed with the actual use of the driver.  
There are problems both with coupling and with cohesion:  
       

• Tight coupling— If I change the rule on the resolution (say, I need to 
add a MIDDLE value), I must change the code in two places that 
are otherwise not related. 

 
 

… but there are 
problems with 
coupling and 
cohesion 
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• Low cohesion— I am giving doDraw and doPrint two unrelated 
assignments: they must both create a shape and must also 
worry about which driver to use. 

Tight coupling and low cohesion may not be a problem right now. 
However, they usually increase maintenance costs. Also, in the real 
world, I would likely have many more places affected than just the 
two shown here. 

Switches may indicate a need for abstraction. 

Often, a switch indicates (1) the need for polymorphic behavior, or 
(2) the presence of misplaced responsibilities. Consider instead a 
more general solution such as abstraction or giving the respon-
sibility to other objects. 

Alternative 2: use 

inheritance  

Another alternative would be to use inheritance. I could have two 
different ApControls: one that uses low-resolution drivers and one 
that uses high-resolution drivers. Both would be derived from the 
same abstract class, so common code could be maintained. I show 
this in Figure 10-1. 

 
Figure 10-1   Alternative 2— handling variation with inheritance. 
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While inheritance could work in this simple case, it has so many dis-
advantages that I would rather stay with the switches. For example: 

• Combinatorial explosion— For each different family and each new 
family I get in the future, I must create a new concrete class 
(that is, a new version of ApControl). 

• Unclear meaning— The resultant classes do not help clarify what 
is going on. I have specialized each class to a particular special 
case. If I want my code to be easy to maintain in the future, I 
need to strive to make it as clear as possible what is going on. 
Then, I do not have to spend a lot of time trying to relearn what 
that section of code is trying to do. 

• Need to favor composition— Finally, it violates the basic rule to 
"favor composition over inheritance." 

In my experience, I have found that switches often indicate an 
opportunity for abstraction. In this example, LRDD and HRDD are 
both display drivers and LRPD and HRPD are both print drivers. The 
abstractions would therefore be display drivers and print drivers. Fig-
ure 10-2 shows this conceptually. I say "conceptually" because 
LRDD and HRDD do not really derive from the same abstract class. 

Alternative 3: 

replace switches with 

abstraction 

 
Figure 1O-2   Drivers and their abstractions. 

Note: At this point, I do not have to be concerned that they derive    The code is simpler to 
from different classes because I know I can use the Adapter pattern    understand to adapt 
the drivers, making it appear they belong to the appropriate abstract class. 

.. . but this also has 

problems 
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Defining the objects this way would allow for ApControl to use a 
DisplayDriver and a PrintDriver without using switches. 
ApControl is much simpler to understand because it does not have 
to worry about the type of drivers it has. In other words, ApControl 
would use a DisplayDriver object or a PrintDriver object 
without having to worry about the driver's resolution.  

See Figure 10-3 and the code in Example 10-2. 

 
Figure 1O-3   ApControl using drivers in the ideal situation. 

Example 1O-2   Java Code Fragments: Using 
Polymorphism to Solve the Problem 
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One question remains: How do I create the appropriate objects? 

I could have ApControl do it, but this can cause maintenance 
problems in the future. If I have to work with a new set of objects, I 
will have to change ApControl. Instead, if I use a "factory" object 
to instantiate the objects I need, I will have prepared myself for new 
families of objects. 

In this example, I will use a factory object to control the creation of 
the appropriate family of drivers. The ApControl object will use 
another object— the factory object— to get the appropriate type of 
display driver and the appropr iate type of print driver for the current 
computer being used. The interaction would look something like 
the one shown in Figure 10-4. 

From ApControl's point of view, things are now pretty simple. It lets 
ResFactory worry about keeping track of which drivers to use. 
Although I am still faced with writing code to do this tracking, I have 
decomposed the problem according to responsibility. ApControl 
has the responsibility for knowing how to work with the 
appropriate objects. ResFactory has the responsibility for 
deciding which objects are appropriate. I can use different factory 
objects or even just one object (that might use switches). In any 
case, it is better than what I had before. 

This creates cohesion: all that ResFactory does is create the appro-
priate drivers; all ApControl does is use them. 

There are ways to avoid the use of switches in ResFactory itself. This 
would allow me to make future changes without affecting any existing 
factory objects. I can encapsulate a variation in a class by defining an 
abstract class that represents the factory concept. In the case of 
ResFactory, I have two different behaviors (methods): 

• Give me the display driver I should use. 

• Give me the print driver I should use. 

Factory objects 

The factory is 

responsible... 

and cohesive 

. . . and it encapsu-

lates variation in a 

class 



 
Figure 1O-4   ApControl gets its drivers from a factory object. 

ResFactory can be instantiated from one of two concrete classes 
and derived from an abstract class that has these public methods, as 
shown in Figure 10-5. 
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Figure 1O-5   The ResFactory encapsulates the variations. 

Strategies for bridging analysis and design. 

Below are three key strategies involved in the Abstract Factory. 

Strategy Shown in the Design 

Find what varies and 
encapsulate it. 

Favor composition over 
inheritance. 

Design to interfaces, not 
to implementations. 

The choice of which driver object to use 
was varying. So, I encapsulated it in 
ResFactory. 

Put this variation in a separate object—  
ResFactory— and have ApControl 
use it as opposed to having two different 
ApControl objects.  

ApControl knows how to ask 
ResFactory to instantiate drivers— it 
does not know (or care) how ResFactory 
is actually doing it. 

Learning the Abstract Factory Pattern: 
Implementing It 

Example   10-3  shows how to  implement the  Abstract Factory    Implementation of 
objects for this design. the design 
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Example 1O-3 Java Code Fragments: Implementation of ResFactory 

class LowResFact extends ResFactory { 

DisplayDriver public 
getDispDrvr() { 
return new 

lrdd(); } 

PrintDriver public 
getPrtDrvr() { 
return new lrpd(); 

} } 
class HighResFact extends ResFactory { 

DisplayDriver public 
getDispDrvr() { 
return new hrdd(); } 

PrintDriver public 
getPrtDrvr() { 
return new hrpd(); } }  

Putting it together: 

the Abstract Factory 

To finish the solution, I have the ApControl talk with the appropri-
ate factory object (either LowResFact or HighResFact); this is 
shown in Figure 10-6. Note that ResFactory is abstract, and that 
this hiding of ResFactory's implementation is what makes the pat-
tern work. Hence, the name Abstract Factory for the pattern.  

How this works ApControl is given either a LowResFact object or a HighResFact 
object. It asks this object for the appropriate drivers when it needs 
them. The factory object instantiates the particular driver (low or 
high resolution) that it knows about. ApControl does not need to 
worry about whether a low-resolution or a high-resolution driver is 
returned since it uses both in the same manner. 



 
Figure 1O-6   Intermediate solution using the Abstract Factory. 

I have ignored one issue: LRDD and HRDD may not have been The LRDD/HRDD 
derived from the same abstract class (as may be true of LRPD and and LRPD/HRPD 

HRPD). Knowing the Adapter pattern, this does not present much pairs do not 
of a problem. I can simply use the structure I have in Figure 10-6, necessarily derive 

but adapt the drivers as shown in Figure 10-7. from the same classes 
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Figure 1O-7   Solving the problem with the Abstract Factory and 
Adapter. 

How this works  The implementation of this design is essentially the same as the one 

before it. The only difference is that now the factory objects instan-
tiate objects from classes I have created that adapt the objects I 
started with. This is an important modeling method. By combining 
the Adapter pattern with the Abstract Factory pattern in this way, I 
can treat these conceptually similar objects as if they were siblings 
even if they are not. This enables the Abstract Factory to be used in 
more situations. 
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In this pattern, 

• The client object just knows who to ask for the objects it needs 
and how to use them. 

• The Abstract Factory class specifies which objects can be instan 
tiated by defining a method for each of these different types of 
objects. Typically, an Abstract Factory object will have a method 
for each type of object that must be instantiated. 

• The concrete factories specify which objects are to be instanti 
ated. 

The roles of the 

objects in the 

Abstract Factory 

  

Field Notes: The Abstract 
Factory Pattern 

Deciding which factory object is needed is really the same as deter-
mining which family of objects to use. For example, in the preceding 
driver problem, I had one family for low-resolution drivers and 
another family for high-resolution drivers. How do I know which 
set I want? In a case like this, it is most likely that a configuration 
file will tell me. I can then write a few lines of code that instantiate 
the proper factory object based on this configuration information. 

I can also use an Abstract Factory so I can use a subsystem for dif-
ferent applications. In this case, the factory object will be passed to 
the subsystem, telling the subsystem which objects it is to use. In 
this case, it is usually known by the main system which family of 
objects the subsystem will need. Before the subsystem is called, the 
correct factory object would be instantiated. 

How to get the right 
factory object 
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The Abstract Factory Pattern: Key Features 

Intent You want to have families or sets of objects for particular clients (or 
cases).  

Problem Families of related objects need to be instantiated. 

Solution Coordinates the creation of families of objects. Gives a way to take the 
rules of how to perform the instantiation out of the client object that is 
using these created objects. 

Participants and The AbstractFactory defines the interface for how to create each 
Collaborators member of the family of objects required. Typically, each family is cre- 

ated by having its own unique ConcreteFactory.  

Consequences The pattern isolates the rules of which objects to use from the logic of 
how to use these objects. 

Implementation Define an abstract class that specifies which objects are to be made. 
Then implement one concrete class for each family. Tables or fi les can 
also be used to accomplish the same thing.  

GoF Reference Pages 87-96.  

 
Figure 1O-8   Standard, simplified view of the Abstract Factory pattern. 
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Figure 10-8 shows a Client using objects derived from two different 
server classes (AbstractProductA and AbstractProductB). It is a 
design that simplifies, hides implementations, and makes a system 
more maintainable. 

• The client object does not know which particular concrete  
implementations of the server objects it has because the factory 
object has the responsibility to create them. 

• The client object does not even know which particular factory it 
uses since it only knows that it has an Abstract Factory object. It 
has a ConcreteFactoryl or a ConcreteFactory2 object, but 
it doesn't know which one. 

I have hidden (encapsulated) from the Client the choice about 
which server objects are being used. This will make it easier in the 
future to make changes in the algorithm for making this choice 
because the Client is unaffected. 

The Abstract Factory pattern affords us a new kind of decomposi-
tion— decomposition by responsibility. Using it decomposes our 
problem into 

• Who is using our particular objects (ApControl) 

• Who   is   deciding   upon   which   particular   objects   to   use 
(AbstractFactory)  

Using the Abstract Factory is indicated when the problem domain 
has different families of objects present and each family is used 
under different circumstances. 

Abstract Factory 
applies when there 

are families of objects, 

You may define families according to any number of reasons. 
Examples include: 

• Different operating systems (when writing cross-platform appli-
cations) 

How Abstract 

Factory works and 

what its benefits are 
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• Different performance guidelines 

• Different versions of applications 

A variation of the 
Abstract Factory pat-

tern: configuration 

files 

• Different traits for users of the application 

Once you have identified the families and the members for each 
family, you must decide how you are going to implement each case 
(that is, each family). In my example, I did this by defining an 
abstract class that specified which family member types could be 
instantiated. For each family, I then derived a class from this 
abstract class that would instantiate these family members. 

Sometimes you will have families of objects but do not want to con-
trol their instantiation with a different derived class for each family. 
Perhaps you want something more dynamic. 

Examples might be 

• You want to have a configuration file that specifies which 
objects to use. You can use a switch based on the information in 
the configuration file that instantiates the correct object. 

• Each family can have a record in a database that contains infor  
mation about which objects it is to use. Each column (field) in 
the database indicates which specific class type to use for each 
make method in the Abstract Factory. 

  

A further variation: 

using the Class class 

in Java 

If you are working in Java, you can take the configuration file con-
cept one step further. Have the information in the field names rep-
resent the class name to use. It does not need to be the full class 
name as long as you have a set convention. For example, you could 
have a set prefix or suffix to add to the name in the file. Using 
Java's Class class you can instantiate the correct object based on 
these names.2 

2.  For a good description of Java's Class class see Eckel, B., Thinking in Java, Upper 
Saddle River, N.J.: Prentice Hall, 2000. 
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In real-world projects, members in different families do not always 
have a common parent. For example, in the earlier driver example, it is 
likely that the LRDD and HRDD driver classes are not derived from 
the same class. In cases like this, it is necessary to adapt them so an 
Abstract Factory pattern can work. 

Relating the Abstract Factory Pattern to 
the CAD/CAM Problem  

In the CAD/CAM problem, the system will have to deal with many 
sets of features, depending upon which CAD/CAM version it is 
working with. In the V1 system, all of the features will be imple -
mented for V1. Similarly, in the V2 system, all of the features will 
be implemented for V2. 

The families that I will use for the Abstract Factory pattern will be 
V1 Features and V2 Features. 

Summary  

The Abstract Factory is used when you must coordinate the creation 
of families of objects. It gives a way to take the rules regarding how to 
perform the instantiation out of the client object that is using these 
created objects. 

• First, identify the rules for instantiation and define an abstract 
class with an interface that has a method for each object that 
needs to be instantiated. 

• Then, implement concrete classes from this class for each 
family. 

• The client object uses this factory object to create the server 
objects that it needs. 

In this chapter 

Adapters and the 
Abstract Factory 
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Supplement: C++ Code Examples 

Example 1O-4 C++ Code Fragments: A Switch 
to Control Which Driver to Use 

// C++ CODE FRAGMENT 

// class ApControl 

void ApControl::doDraw (} { 

.   .   . 
switch (RESOLUTION) 
{ case LOW: 
// use Irdd 
case HIGH: // 
use hrdd 

  } 
}  
void ApControl::doPrint () { 

.  .  . 
switch (RESOLUTION) 
{ case LOW: 

// use lrpd 
case HIGH: 
// use hrpd } }  

E x a m p l e  1O-5   C + +  Code F r a g m e n t s :  Using 
Polymorphism to Solve the Problem 

//   C++   CODE   FRAGMENT  

//  class ApControl  

void ApControl::doDraw   ()    { 

myDisplayDriver->draw(); 
} 
void ApControl::doPrint () { 

myPrintDriver->print();
 } 
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Example 1O-6 C++ Code Fragments: Implementation of ResFactory 

class LowResFact : public ResFactory; 

DisplayDriver * 
LowResFact::getDispDrvr() { 
return new Irdd; } 

PrintDriver * 
LowResFact::getPrtDrvr() { 
return new Irpd; } 

class HighResFact : public ResFactory; 

DisplayDriver * 
HighResFact::getDispDrvr() 
{ return new hrdd; 

} 

PrintDriver * 
HighResFact::getPrtDrvr() { 
return new hrpd; }  



PART IV 

Putting It All Together: 
Thinking in Patterns  

Part Overview 

In this part, I propose an approach to designing object-oriented sys-
tems based on patterns. I have proven this approach in my own 
design practice. I apply this approach to the CAD/CAM problem 
that we have been examining since Chapter 3, "A Problem That 
Cries Out for Flexible Code." 

In this part 

This approach first tries to understand the context in which objects show 
up. 

Chapter Discusses These Topics 
  

11 

12 

13 

A discussion of Christopher Alexander's ideas and how 
experts use these ideas to design.  

Application of this approach to solve the CAD/CAM 
problem first presented in Chapter 3. A comparison of 
this solution with the solution I developed in Chapter 4. 

A summary of what I have discussed about object-orien-
tation and design patterns. The concepts here are what I 
call pattern-oriented design.  
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CHAPTER 11 

How Do Experts Design?  

Overview 

When trying to design, how do you start? Do you first get the 
details and see how they are put together? Or do you look from the 
big picture and break it down. Or is there another way? 

Christopher Alexander's approach is to focus on the high-level rela-
tionships— in a sense, working from the top down. Before making 
any design decision, he feels it is essential to understand the context of 
the problem we are solving. He uses patterns to define these rela-
tionships. However, more than just presenting a collection of patterns, 
he offers us an entire approach to design. The area about which he 
is writing is architecture, designing places where people live and 
work, but his principles apply to software design as well. 

In this chapter, 

• I discuss Alexander's approach to design. 

• I describe how to apply this in the software arena. 

In this chapter 

  

Building by Adding Distinctions  

Now that you have a handle on some of the design patterns, it is  The Timeless Way 
time to see how they can work together. For Alexander, it is not  of Building: a book 

enough to simply describe individual patterns. He uses them to about architecture 
develop a new paradigm for design. 

185 
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... came to shape me 

as a designer 

His book, The Timeless Way of Building, is both about patterns and 
how they work together. This is a beautiful book. It is one of my 
favorite books both on a personal level and on a professional level. 
It has helped me appreciate things in my life, to understand the 
environment in which I live, and also to achieve better software 
design. 

How can this be? How can a book about designing buildings and 
towns have such a profound influence on designing software? I 
believe it is because it describes a paradigm that Alexander says a 
designer should work from. Any designer. It is this paradigm of 
design that I find most interesting. 

I wish that I could say I had immediately adopted Alexander's 
insights the first time I read his book; however, that was not the 
case. My initial reaction to this book was, "This is very interesting. It 
makes sense." And then I went back to the traditional design 
methods that I had been using for so long. 

But sometimes the old sayings turn out to be true. As in, "Luck is 
when opportunity meets with preparedness." Or, "Chance favors the 
prepared mind." I got "lucky" and that has made all the difference. 

Within a few weeks of reading The Timeless Way of Building, I was 
faced with an opportunity. I was on a design project and my standard 
approaches weren't working. I had designs, but they weren't good 
enough. All of my tried and true design methods were failing me. I 
was very frustrated. Fortunately, I was wise enough to try a new 
way— Alexander's way— and was delighted with the results. 

In the next chapter, I will describe what I did. But first, let's look at 
what Alexander offers us. 
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Design is often thought of as a process of synthesis, a process of 
putting together things, a process of combination. According to 
this view, a whole is created by putting together parts. 
The parts come first: and the form of the whole comes 
second.1 

Building by fitting 
things together 

It is natural to design from parts to the whole, starting with the 
concrete things that I know. 

When I first read this, I thought, "Yes. That is pretty much how I 
look at things. I figure out what I need and then put it together." 
That is, I identify my classes and then see how they work together. 
After assembling the pieces, I may step back to see that they fit in the 
big picture. But even when I switch my focus from local to global, I 
am still thinking about the pieces throughout the process. 

As an object-oriented developer, these pieces are objects and classes. I 
identified them. I defined behavior and interfaces. But I started with 
pieces and typically stayed focused on them. 

Think about the original CAD/CAM solution in Chapter 4, "A Stan-
dard Object-Oriented Solution." I started out thinking about the 
different classes I needed: slots, holes, cutouts, and so on. Knowing 
that I needed to relate these to a V1 system and a V2 system, I 
thought I needed a set of these classes that worked with V1 and 
another set of these classes that worked with V2. Finally, after corning 
up with these classes, I saw how they tied together. 

But it is impossible to form anything which has the character of 
nature by adding preformed parts.2 

 

But, this may not be 
a good way to think 
about it 

1. Alexander, C., Ishikawa, S., Silverstein, M., The Timeless Way of Building, New 
York: Oxford University Press, 1979, p. 368. 

2. ibid, p. 368. 
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Building by pieces 
will not get us 
elegance 

Alexander's thesis is that building from the pieces is not a good way 
to design. 

Even though Alexander is talking about architecture, many soft-
ware design practitioners whom I respect said that his insights were 
valid for us as well. I had to open my mind to this new way of 
thinking. And when I did so, I heard Alexander say that "good soft-
ware design cannot be achieved simply by adding together pre-
formed parts" (i.e., parts defined before seeing how they would fit 
together). 

When parts are modular and made before the whole, by defini -
tion then, they are identical, and it is impossible for every part to 
be unique, according to its position in the whole. Even more 
important, it simply is not possible for any combination 
of modular parts to contain the number of patterns 
which must be present simultaneously in a place which 
is alive.3 

Alexander's talk about modularity was confusing to me at first. 
Then I realized that if we start out with modules before we have the 
big picture, the modules would be the same, since there would be no 
reason to for them to be different. 

This seems to be the goal of reuse. Don't we want to use exactly the 
same modules again and again? Yes. But we also want maximum 
flexibility and robustness. Simply creating modules does not guar-
antee this. 

Once I started to learn how to use design patterns— as Alexander 
teaches— I learned how to create reusable — and flexible — classes 
to a greater extent than I had been able to do before. I became a better 
designer. 

3.  ibid, pp. 368-369. 
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Design is often thought of as a process of synthesis, a process of 
putting together things, a process of combination. According to 
this view, a whole is created by putting together parts. 
The parts come first: and the form of the whole comes 
second.1 

Building by fitting 
things together 

  

It is natural to design from parts to the whole, starting with the 
concrete things that I know. 

When I first read this, I thought, "Yes. That is pretty much how I 
look at things. I figure out what I need and then put it together." 
That is, I identify my classes and then see how they work together. 
After assembling the pieces, I may step back to see that they fit in the 
big picture. But even when I switch my focus from local to global, I 
am still thinking about the pieces throughout the process. 

As an object-oriented developer, these pieces are objects and classes. I 
identified them. I defined behavior and interfaces. But I started with 
pieces and typically stayed focused on them. 

Think about the original CAD/CAM solution in Chapter 4, "A Stan-
dard Object-Oriented Solution." I started out thinking about the 
different classes I needed: slots, holes, cutouts, and so on. Knowing 
that I needed to relate these to a V1 system and a V2 system, I 
thought I needed a set of these classes that worked with V1 and 
another set of these classes that worked with V2. Finally, after coming 
up with these classes, I saw how they tied together. 

But it is impossible to form anything which has the character of 
nature by adding preformed parts.2 

But, this may not be 
a good way to think 
about it 

1. Alexander, C., Ishikawa, S., Silverstein, M., The Timeless Way of Building, New 
York: Oxford University Press, 1979, p. 368. 

2. ibid, p. 368. 
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Alexander's thesis is that building from the pieces is not a good way to 
design. 

Building by pieces 
will not get us 
elegance 

Even though Alexander is talking about architecture, many soft-
ware design practitioners whom I respect said that his insights were 
valid for us as well. I had to open my mind to this new way of 
thinking. And when I did so, I heard Alexander say that "good soft-
ware design cannot be achieved simply by adding together pre-
formed parts" (i.e., parts defined before seeing how they would fit 
together). 

When parts are modular and made before the whole, by defini -
tion then, they are identical, and it is impossible for every part to 
be un ique, according to its position in the whole. Even more 
important, it simply is not possible for any combination 
of modular parts to contain the number of patterns 
which must be present simultaneously in a place which 
is alive.3 

Alexander's talk about modularity was confusing to me at first. 
Then I realized that if we start out with modules before we have the 
big picture, the modules would be the same, since there would be no 
reason to for them to be different. 

This seems to be the goal of reuse. Don't we want to use exactly the 
same modules again and again? Yes. But we also want maximum 
flexibility and robustness. Simply creating modules does not guar-
antee this. 

Once I started to learn how to use design patterns— as Alexander 
teaches— I learned how to create reusable— and flexible — classes 
to a greater extent than I had been able to do before. I became a better 
designer. 

3.  ibid, pp. 368-369. 
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It is only possible to make a place which is alive by a process in 

which each part is modified by its position in the whole.4 

When you read alive, think robust and flexible systems. 

Earlier, Alexander said that parts need to be unique so that they can 
take advantage of their particular situation. Now, he takes this 
deeper. It is in coping with and fitting into the surroundings that 
gives a place its character. Think of examples in architecture: 

• A Swiss village— Your mind's eye brings up a village of closely 
nestled cottages, each looking quite similar to the one next to it, 
but each one different in its own way. The differences are not 
arbitrary, but reflect the financial means of the builder and 
owner as well as the need of the building to blend in with its 
immediate surroundings. The effect is a very nice, comfortable  
image. 

• An American suburb— All of the houses are pretty much cookie - 
cutter designs. Attention is rarely paid to the natural surround 
ings of the house. Covenants and standards attempt to enforce 
this homogeneity.  The  effect is a  depersonalization of the 
houses and is not at all pleasing. 

Applying this to software design might seem a bit too "conceptual" at 
this point. For now, it is enough to understand that the goal is to 
design pieces— classes, objects— within the context in which they 
must live in order to create robust and flexible systems. 

In short, each part is given its specific form by its existence in the 

context of the larger whole. 

This is a differentiating process. It views design as a 
sequence of acts of complexification; structure is injected 

Good design requires 
keeping the big 

picture in mind 

The design process 
involves 

complexification 

4.  ibid, p. 369. 
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How do we do this? 

What is the process of 

design? 

into the whole  by operating on the whole and crinkling it, 
not by adding little parts to one another. In the process of 
differentiation, the whole gives birth to its parts: The form 
of the whole, and its parts, come into being 
simultaneously. The image of the differentiating process 
is the growth of an embryo.5 

"Complexification." What in the world does that mean? Isn't the 
goal to make things simpler, not more complex? 

What Alexander is describing is a way to think about design that 
starts by looking at the problem in its simplest terms and then adds 
additional features (distinctions), making the design more complex 
as we go because we are adding more information. 

This is a very natural process. We do it all the time. For example, 
suppose you need to arrange a room for a lecture with an audience of 
40 people. As you describe your requirements to someone, you 
might say something like, "I'll need a room 30 feet by 30 feet" 
(starting simple). Then, "I'd like the chairs arranged theater style: 4 
rows of 8" (adding information, you have made the description of 
the room more complex). And then, "I need a lectern at the front of 
the room" (even more complex). 

The unfolding of a design in the mind of its creator, under the 

influence of language, is just the same. 

Each pattern is an operator that differentiates space: that is, 
it creates distinctions where no distinction was before. 
And in the language the operations are arranged in 
sequence: so that, as they are done, one after another, 
gradually a complete thing is born, general in the sense 

5.  ibid, p. 370. 
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that it shared its patterns with other comparable things; 
specific in the sense that it is unique, according to its cir-
cumstances. 

The language is a sequence of these operators, in which 
each one further differentiates the image, which is the 
product of the previous differentiations.6 

Alexander asserts that design should start with a simple statement 
of the problem, then make it more detailed (complex) by injecting 
information into the statement. This information takes the form of a 
pattern. To Alexander, a pattern defines relationships between the 
entities in his problem domain. 

For example, consider the Courtyard pattern discussed in Chapter 5, 
"An Introduction to Design Patterns." The pattern must describe the 
entities that are involved in a courtyard and how they relate. Entities 
such as 

• The open spaces of the courtyard 

• The crossing paths 

• The views outward 

• And even the people who are going to use the courtyard 

Thinking in terms of how these entities need to relate to each 
other gives us a considerable amount of information with which to 
design the courtyard. We refine the design of the courtyard by 
thinking about the other patterns that would exist in the context of 
the courtyard pattern, such as porches or verandas facing the 
courtyard. 

6.  ibid, pp. 372-373. 
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What makes this analytical method so powerful is that it does not 
have to rely on my experience or my intuition or my creativity. 
Alexander's thesis is that these patterns exist independent of any 
person. A space is alive because it follows a natural process, not 
simply because the designer was a genius. Since the quality of a 
design is dependent upon following this natural process, it should 
not be surprising that quality solutions for similar problems appear 
very much alike. 

Based on this, he gives us the rules a good designer would follow. 

• One at a time— Patterns should be applied one at a time in 
sequence. 

• Context first— Apply those patterns first that create the context 
for the other patterns. 

Patterns define relationships. 

The patterns that Alexander describes define relationships 
between the entities in the problem domain. These patterns are 
not as important as the relationships but give us a way to talk 
about them. 

The steps to follow Alexander's approach also applies to software design. Perhaps not 
literally but certainly philosophically. What would Alexander say to 
software designers? 
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Alexander's Steps       Discussion 
  

Identify patterns  

Start with context 
patterns  

Then, work inward 
from the context 

Refine the design 

Implement 

Identify the patterns that are present in your 
problem. Think about your problem in terms of 
the patterns that are present. Remember, the 
purpose of the pattern is to define relationships 
among entities. 

Identify the patterns that create the context for the 
other patterns. These should be your starting 
point. 

Look at the remaining patterns and at any other 
patterns that you might have uncovered. From 
this set, pick the patterns that define the context 
for the patterns that would remain. Repeat. 

As you refine, always consider the context implied 
by the patterns. 

The implementation incorporates the details dic-
tated by the patterns. 

  

Using Alexander in software design: a 
personal observation. 

The first time I used Alexander's approach, I took his words too 
literally. His concepts— rooted in architecture— do not usua lly 
translate directly to software design (or other kinds of design). In 
some ways, I was lucky in my early experiences in using design 
patterns in that the problems I solved had the patterns follow 
pretty well-defined orders of context. However, this also worked 
against me in that I naively assumed that this method would 
work in general (it does not). 



194       Part IV   •    Putting It All Together: Thinking in Patterns 

This was compounded by the fact that many key designers in the 
software community were espousing the development of "pattern 
languages"— looking for formal ways to apply Alexander to 
software. I interpreted this to mean that we were close to being 
able to apply Alexander's approach directly in software design (I 
no longer believe this to be true). Since Alexander said patterns 
in architecture had predetermined orders of context, I assumed 
patterns in software also had this predetermined order. That is, 
one type of pattern would always create the context for another 
type. I began to evangelize about Alexander's approach— as I 
understood it— while teaching others. A few months and a few 
projects later, I began to see the problems. There were cases 
where a preset order of contexts did not work. 

Having been trained as a mathematician, I only needed one 
counterexample to disprove my theory. This started me question-
ing everything about my approach— something I usually did, but 
had forgotten in my excitement. 

Since that early stage, I now look at the principles upon which 
Alexander's work is based. While they manifest themselves dif-
ferently in architecture and in software development, these prin-
ciples do apply to software design. I see it in improved designs. I 
see it in more rapid and robust analysis. I experience it every 
time I have to maintain my software. 

Summary 

In this chapter Design is normally thought of as a process of synthesis, a process of 

putting things together. In software, a common approach is to look 
immediately for objects and classes and components and then think 
about how they should fit together. 

In The Timeless Way of Building, Christopher Alexander described a 
better approach, one that is based on patterns: 
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1. Start out with a conceptual understanding of the whole in  
order to understand what needs to be accomplished. 

2. Identify the patterns that are present in the whole. 

3. Start with those patterns that create the context for the others. 

4. Apply these patterns. 

5. Repeat with the remaining patterns, as well as with any new 
patterns that were discovered along the way. 

6. Finally, refine the design and implement within the context 
created by applying these patterns one at a time. 

As a software developer, you may not be able to apply Alexander's 
pattern language approach directly. However, designing by adding 
concepts within the context of previously presented concepts is 
surely something that all of us can do. Keep this in mind as you 
learn new patterns later in this book. Many patterns create robust 
software because they define contexts within which the classes that 
implement them can work.  



CHAPTER 12 

 

  

Solving the CAD/CAM 
Problem with Patterns  

Overview 

In this chapter, I apply design patterns to solve the CAD/CAM prob-     In this chapter 
lem presented in Chapter 3, "A Problem That Cries Out for Flexible  
Code." 

In this chapter, 

• I walk through the methods needed to solve the earlier CAD/ 
CAM problem. 

• I take you through the initial design phase. The details of  
implementation are left to you. 

• I compare the new solution with the previous solution. 

Review of the CAD/CAM Problem  

In Chapter 3, I described the requirements for the CAD/CAM prob-
lem, a real-world problem that first got me on the road to using 
design patterns. 

The problem domain is in computer systems to support a large engi-
neering organization, specifically, to support their CAD/CAM system.  

The basic requirement is to create a computer program that can 
read a CAD/CAM dataset and extract the features that an existing 
expert system needs to be able to do intelligent design. This system is 
supposed to shield the expert system from the CAD/CAM system. The 
complication is that the CAD/CAM system was in the midst of 

The requirements 
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changes. Potentially, there could be multiple versions of the CAD/ 
CAM system that the expert system would have to interface with. 

After initial interviews, I developed the high-level system architec-
ture shown in Figure 12-1 and the following set of requirements for 
the system: 

Requirement Description 
  

Read a CAD/CAM 
model and extract 
features  

Be able to deal with 
many kinds of parts 

Handle multiple 
versions of the CAD/ 
CAM system 

 

• My system must be able to analyze and extract 
CAD/CAM descriptions of pieces of sheet metal. 

• The expert system then determines how the 
sheet metal should be made and generates the 
required instructions so that a robot can make it. 

• Initially, I am concerned with sheet metal parts. 
• Each sheet metal part can have multiple kinds of 

features, including slots, holes, cutouts, specials, 
and irregulars. It is unlikely that there will be other 
features in the future. 

• From Figure 12-1, you can infer that I need the 
ability to plug-and-play different CAD/CAM sys 
tems without having to change the expert system. 

 
Figure 12-1   High-level view of the solution. 
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Thinking in Patterns 

You have learned several patterns and have seen Alexander's phi-     The steps to thinking 
losophy of design: start with the big picture and add details. To    in patterns 
accomplish this on a software project, I use the following steps: 

1. Find the patterns I have in my problem domain. This is the set 
of patterns to be analyzed. 

2. For the set of patterns to be analyzed, do the following: 

a. Pick the pattern that provides the most context for the other 
patterns. 

b. Apply this pattern to my highest conceptual design. 

c. Identify any additional patterns that might have come up. 
Add them to the set of patterns to be analyzed. 

d. Repeat for the sets of patterns that have not yet been 
analyzed. 

3.  Add detail as needed to the design. Expand the method and class 
definitions. 

Admittedly this works only when you can understand the entire 
problem domain in terms of patterns. Unfortunately, this does not 
happen all the time. Design patterns give you the way to get 
started and then you have to fill in the rest by identifying relation-
ships amongst the concepts in the problem domain. The method 
for doing this uses commonality/variability ana lysis and is outside 
the scope of this book. However, you can get more information 
about CVA on this book's Web site at http://www.netobjectives.com/ 
dpexplained. 

Thinking in Patterns: Step 1 

In the previous chapters, I identified four patterns in the CAD/CAM    1. Identify the 
problem. They are: patterns 
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• Abstract Factory 

• Adapter 

• Bridge 

• Facade 

No other patterns stand out at this point, but I am open to some 
additional ones showing up. 

Work through the 
patterns by context 

Thinking in Patterns: Step 2a 

I will work through the patterns, selecting them based on how each 
pattern creates the context for the other patterns. 

  

2a. See which one 
creates the context for 

the others 

When determining which patterns create the context for others in 
my problem domain, I apply an easy technique: I look through all 
possible pairings of the patterns, taken two at a time. In this case, 
there are six possible pairings, as shown in Figure 12-2. 

 
Figure 12-2   Different possible relationships between the patterns. 
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If you have several other patterns, it may look like this process    This doesn't take could 
get very involved. That tur ns out not to be the case. With a    very long little experience, 
many of the patterns can easily be eliminated up front from contention for the primary 
pattern. Usually, you have to deal with only a handful or so. 

In this case, there are few enough combinations that we can look at 
all of the possibilities. 

What exactly do we mean when we say one pattern creates the     We look for what 
context for another? One definition of context is the interrelated    creates context 
conditions in which something exists or occurs— an environment, a setting. 

In the courtyard example in Chapter 11, "How Do Experts Design?" 
Alexander said that a porch exists in the context of the courtyard. 
The courtyard defines the environment or the settings in which the 
porch exists. 

A pattern in a system often relates to other patterns in the system by 
providing a context for these other patterns. In your analysis, it is 
always valuable to look for whether and how a pattern relates to the 
other patterns, to look for the contexts that the pattern creates or 
provides for the other patterns as well as those contexts in which the 
pattern itself exists. You may not be able to find these every time. 
But, by looking, you will create higher-quality solutions. 

Looking for context is an essential tool to add to your bag of analysis 
and design tools. 



2O2       Part IV   •    Putting It All Together: Thinking in Patterns 

A rule to use when considering context. 

During one of my projects, I was reflecting on my design 
approaches. I noticed something that I did consistently, almost 
unconsciously: I never worried about how I was going to instan-
tiate my objects until I knew what I wanted my objects to be. 
My chief concern was with relationships between objects as if 
they already existed. I assumed that I would be able to construct 
the objects that fit in these relationships when the time comes to 
do so. 

The reason I do this is that I need to minimize the number of 
things that I have to keep in my head during a design. Usually I 
can do so with a minimal amount of risk when I delay thinking 
about how to instantiate objects that meet my requirements. 
Worrying too early is counterproductive; it is better not to worry 
about instantiating objects until I know what it is that I need to 
instantiate. I will let tomorrow take care of itself— at least when 
it comes to instantiation! 

Perhaps this seems sensible to you. I had never heard it stated as a 
rule and I wanted to check it out before adopting it as universal. I 
trust my intuition as a designer, but I am certainly not foolproof. 
So, I have conferred with several other experienced developers 
on this subject; without exception, they also follow this rule. That 
gives me confidence to offer it to you: 

Rule: Consider what you need to have in your system before 

you concern yourself with how to create it. 

This fits Alexander's context rule: When you have a design pattern 
that involves creating objects, the objects set the context for the 
pattern. 
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When I am considering which pattern creates context for the others, I 
begin with Abstract Factory. The Abstract Factory's context is 
determined by the objects it needs to instantiate, as shown by the 
following: 

• There will be a set of make methods, the implementation of 
each having a return new xxx in it. 

• At this time, I do not know what xxx will be. 

• xxx will be determined by the objects I am using. 

• The objects that I will need to use are defined by other patterns. 

Since I cannot even define the Abstract Factory until I know the 
classes the other patterns will define, it is not the seniormost pattern 
(the pattern that creates the context for the other patterns). 
Therefore, I reject it for now as the pattern to start working on. 

In fact, the Abstract Factory will be the last pattern I do (unless 
another creational pattern shows up during my initial design, in 
which case, both creational patterns will vie for being last). 

Seniormost patterns constrain the other patterns. 

Seniormost is my term for the one or two patterns that establish a 
context for the other patterns in my system. This is the pattern 
that constrains what the other patterns can do. Other terms you 
could use are outermost patterns or context-setting patterns. 

There are three pairs of patterns left to consider: Three pairs left 

• Adapter-Bridge 

• Bridge-Facade 

• Facade-Adapter 

Start with (and 

reject) Abstract 

Factory 
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As someone new to patterns, I may not see any pattern that is obvi-
ously dependent on another pattern, nor any pattern that sets the 
context for all others. 

7s there a relation-

ship between the 

patterns?  

Are the patterns 

interrelated? 

When there is not an obvious choice, I have to work through the 
combination of patterns systematically looking for the following: 

• Does one pattern define how the other pattern behaves? 

• Do two patterns mutually influence each other? 

The Adapter pattern is about modifying the interface of a class into 
another interface that the client is expecting. In this case, the inter-
face that needs adapting is the OOGFeature. The Bridge pattern is 
about separating multiple concrete examples of an abstraction from 
their implementation. In this case, the abstraction is Feature and 
the implementations are the V1 and V2 systems. It sounds like the 
Bridge will need the Adapter to modify OOGFeature's interface, 
that is, the Bridge will use the Adapter. 

Clearly there is some relationship between Bridge and Adapter. 

Can I define one of the patterns without another, or is one of the 
patterns needed by another? 

Looking at the patterns tells us what to do. 

• I can talk about the Bridge pattern as separating the Features 
from the V1 and V2 systems without actually knowing how I 
will use the V1 and V2 systems. 

• However, I cannot talk about using an Adapter pattern to mod 
ify the V2 system's interface without knowing what it will be 
modified into. Without the Bridge pattern, this interface doesn't 
exist. The Adapter pattern exists to modify the V2 system's 
interface to the implementation interface the Bridge pattern 
defines. 
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Thus, the Bridge pattern creates the context for the Adapter pattern. 
I can eliminate the Adapter pattern as a candidate for senior-most 
pattern. 

The relationship between context and used by. 

Often, it seems that when one pattern uses another pattern, the 
pattern that is used is within the context of the pattern doing the 
using. There are likely exceptions to this rule, but it seems to 
hold most of the time. 

Now I only have to compare Bridge-Facade and Facade-Adapter. 

I will look at the Bridge and Facade relationship first because if the 
Bridge turns out to be the primary pattern there as well, I do not 
need to consider the Adapter-Facade relationship (remember, I am 
only trying to identify the seniormost pattern at this point). 

It should be readily apparent that the same logic that applied to 
Bridge and Adapter also applies to Bridge and Facade: 

• I will be using the Facade pattern to simplify the V1 system's 
interface. 

• But what will be using the new interface I create? One of the 
implementations of the Bridge pattern. 

Therefore, the Bridge pattern creates the context for the Facade. 
The Bridge is the seniormost pattern. 

According to Alexander, I am supposed to start with the whole. 
Going back to the beginning, I find that I do not yet have the context 
for the Bridge. 

One down, two to go 

The Bridge-Facade 

relationship 

The Bridge is the 

winner 
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Remember, I am not concerned about the design of the expert sys-    Expanding the 
tem. While interesting (and, in many ways more challenging), that    design design 
had already been worked out. My focus is on the design of the Mode l. I know that 
the Model consists of Features, as shown in Figure 12-5.l 

 

Figure 12-5   The Model design. 

Now, I am ready for the Bridge pattern. It is apparent that I have 
multiple Features (the abstraction) with multiple CAD/CAM sys-
tems (the implementations). These are the objects that set the con-
text for the Bridge pattern. 

The Bridge pattern relates the Features to the different CAD/CAM 
system implementations. The Feature class is the Abstraction in 
the Bridge pattern while the V1 and V2 systems are the Implemen-
tations. But what about the Model? Is there a Bridge pattern 
present here as well? Not really. I can build the Model using inher-
itance because the only thing about the Model that varies is the 
implementation that is being used. In this case, I could make deri-
vations of the Model for each CAD/CAM system as in Figure 12-6. 
If I tried using a Bridge pattern for the Model, I'd get the design 
shown in Figure 12-7. 

Ready for the Bridge 

How do we handle 

the Model? 

1. The differences between V1Model and V2Model present little difficulty. Therefore, 
I will only discuss Model in general. 
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Figure 12-6   Using inheritance to handle the two model types. 

 
Figure 12-7   Using the Bridge pattern to handle the two model types. 

Start with the 

canonical form 

.. . and map classes 

into it 

Note that I do not really have a Bridge pattern in Figure 12-7 
because Model is not varying except for the implementation. In the 
Feature, I have different types of Features that have different 
types of implementations— a Bridge pattern does exist here. 

I start implementing the Bridge pattern by using Feature as the 
abstraction and using V1 and V2 as the basis for the implementa-
tions. To translate the problem into the Bridge pattern, I start with 
the standard example of the Bridge pattern and then substitute 
classes into it. Figure 12-8 shows the standardized, simplified form 
(sometimes called the canonical form). 

In the problem, Feature maps to Abstraction. There are five dif -
ferent kinds of features: slot, hole, cutout, irregular, and special. 
The implementations are the V1 and V2 systems; I choose to name 
the classes responsible for these implementations viimp and 
V2lmp, respectively. 

 



 
Figure 12-8   The canonical Bridge pattern. 

Substituting the classes into the canonical Bridge pattern gives 
Figure 12-9. 

 
Figure 12-9   Applying the Bridge pattern to the problem. 

In Figure 12-9, the Features are being implemented by an 
ImpFeature, which is either a Vllmp or a V2lmp. In this design, 
ImpFeature would have to have an interface that allowed for 
Feature to get whatever information it needed to give Model the 
information it requested. Thus, ImpFeature would have an inter-
face including methods such as 

Chapter 12    •   Solving the CAD/CAM Problem with Patterns       2O9 
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• getx to get the X position of Feature 

• getYto get the Y position of Feature 

• getLength to get the length of Feature 

It would also have methods used by only some Features: 

•  getEdgeType to get the type of edge of Feature 

Note: Only features that need this information should call this 
method. Later, I will talk about how to use this contextual informa-
tion to help debug the code. 

Not done yet  

Identifying any 

additional patterns 

Thinking in Patterns: Step 2c 

Maybe I cannot see how to finish the implementation yet, and that is 
okay. I still have other patterns to apply. 

Looking at Figure 12-9, I should ask myself if any other patterns 
show up that I had not previously identified. I do not see any addi-
tional patterns. There is only the challenge of hooking the V1 and 
V2 CAD/CAM systems into the design. That is what the Facade and 
Adapter patterns will do for me.  

  

Do the remaining 

patterns create a 
context for each 

other?  

Thinking in Patterns: Step 2d (Facade) 

Next, I need to verify if any of the remaining patterns create a context 
for each other. In this case, Facade and Adapter now clearly relate to 
different pieces of the design and are independent of each other. 
Therefore, I can apply them in whatever order I choose. I will arbi-
trarily pick the Facade to apply next, which results in Figure 12-10. 



Chapter 12    •    Solving the CAD/CAM Problem with Patterns       211 

 
Figure 12-1O   After applying the Bridge and Facade patterns. 

Applying the Facade pattern means that I insert a facade between 
the V1 modules and the VlImp object that is going to use them. 
v1Facade has simplified methods that relate to what Vlimp needs 
to do. Each method in ViFacade will look like a series of function 
calls on the V1 system. 

The kind of information that I need in order to call these functions 
will determine how v1Imp is implemented. For example, when 
using V1, I need to tell it which model to use and what the Feature's 
ID is. All Vlimp objects that use the ViFacade will therefore need to 
know this information. Since this is implementation-specific 
information, it will need to know it itself, rather than getting it from 
the calling Feature. Thus, in a V1 system, each Feature will need 
its own Vlimp object (to remember system-specific information 
about the feature). I will go over this in more detail once the general 
architecture is completed. 

The Facade  
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Taking advantage of nongeneralities to debug code. 

Earlier in this chapter, I mentioned that some of the methods of 
the implementation should only be called by certain Feature 
objects. I can take advantage of knowing what should be calling 
what to put checks in the code. I do not need to do this, and I 
may need to remove these checks if the rules change. Neverthe-
less, it can be useful the first time in. 

For example, in the CAD/CAM solution, there are Features 
containing an implementation object. One of the implementation 
methods is getEdgeType. This only makes sense if a Feature is a 
slot or a cutout. Other Features do not have edge types. If I have 
implemented things properly, the getEdgeType method will 
never get called except by slots and cutouts. I can check that this 
happens by using an assert in the getEdgeType method that 
verifies that the calling Feature is of the appropriate type. 

Pick Adapter next  

Thinking in Patterns: Step 2d (Adapter) 

Having applied Facade, I can now apply Adapter. This results in 
Figure 12-11. 

 
Figure 12-11   After applying the Bridge, Facade, and Adapter. 
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Thinking in Patterns: Step 2d 
(Abstract Factory) 

All that is left is the Abstract Factory. As it turns out, this pattern is 
not needed. The rationale for using an Abstract Factory was to 
ensure all of the implementation objects were of type V1 if I had a 
V1 system or of type V2 if I had a V2 system. However, the Model 
object itself will know this. There is no point implementing a pattern 
if some other object can easily encapsulate the rules of creation. I 
left the Abstract Factory in the set of patterns because while I was 
first solving this problem I did think the Abstract Factory was present. 
It also illustrates how thinking that a pattern is present when it is 
not is not necessarily counterproductive. 

Finally, do Abstract 

Factory 

  

Thinking in Patterns: Step 3 

The details of the design may still take some work. However, I 
would continue with the design by following Alexander's mandate 
of designing by context. For example, when I see how I need to 
implement a SlotFeature class or the V1Imp class, I should 
remember how the patterns involved are used. In this case, I note 
that in the Bridge pattern, the methods involving the abstractions 
are independent of implementation. This means that the 
Abstraction class (Feature) and all of its derivations 
(Slot-Feature, HoleFeature, and so forth) contain no 
implementation information. Implementation information is left to 
the Implementation classes. 

Finishing the rest 

  

This means the Feature derivations will have methods such as 
getLocation and getLength, while the Implementations will 
contain a way to access this required information. A Vllmp object, 
for example, would need to know the ID of the Feature in the V1 
system. Since each Feature has a unique ID, this means there will 
be one Implementation object for each Feature object. The 
methods in the Vllmp object will use this ID to ask the VlFacade 
for information about the object. 

Assigning 

responsibilities 
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A comparable solution will exist for the V2 implementations. In this 
case, the V2Imp objects will contain a reference to the OOGFeature 
in question. 

Comparison with the Previous Solution 

Comparing solutions     Compare this new solution, shown in Figure 12-11, with the earlier 
solution, which is shown again in Figure 12-12. 

 

Figure 12 -12   This was the first solution.  

A different way to 

compare solutions 

Another way to compare two solutions is to read them. In other 
words, the diagrams visually show inheritance (the is-a relationship) 
and composition (the has-a relationship). Read these diagrams using 
those words where the relationships are present. 
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In the original solution, I had a model that contains Features. 
Features are either slot features, hole features, cutout features, 
irregular features, or special features. Slot features are either V1 
slots or V2 slots. V1 slots use the V1 system while the V2 slots use 
the OOGSlot. Hole features are either V1 hole features or V2 hole 
features. V1 hole features use the V1 system while the V2 hole fea-
tures use the OOGHole. Getting tired of this already, aren't you? 

Now read the latest solution. I have a model that contains Features. 
Features are either slot features, hole features, cutout features, 
irregular features, or special features. All features contain an imple -
mentation which is either a V1 implementation or a V2 implemen-
tation. V1 implementations use a V1 Facade to access the V1 system 
while V2 implementations adapt an OOGFeature. That's it. It 
sounds much better than just a portion of the other solution.  

Summary 

In this chapter, I showed how the standard way of doing designs 
can often lock us into systems that are hard to maintain. Often, it 
can be difficult to see the forest for the trees because I become 
overly focused on the details of the system— the classes. 

Christopher Alexander gives us a better way. By using patterns in 
the problem domain, I can look at the problem in a different way. I 
start with the big picture and add distinctions as I go. Each pattern 
gives me more information than what I had before I used it. 

By selecting the pattern that creates the biggest picture— the con-
text for the system— and then inserting the next significant pattern, 
I developed an application architecture that I could not have seen by 
looking at the classes alone. Thus, I begin to learn to design by 
context instead of by putting together pieces that were identified 
locally. 

In this chapter 
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Like the two carpenters in Chapter 5, "An Introduction to Design 
Patterns," who were trying to decide between a dovetail joint and a 
miter joint, it is the context that should shape the design. In design 
decisions, we often get bogged down by the details and forget about 
the larger context of the system. The details cast a cloud around the 
bigger picture by focusing us on small, local decisions. Patterns give 
you the language to rise above the details and bring the context 
into the discussion in practical ways. This makes it more likely that 
you will see the forces present in the problem domain. Patterns 
help us apply what other designers before us have learned about 
what does and does not work. In so doing, they help to create sys-
tems that are robust, maintainable, and alive. 



CHAPTER 13 

The Principles and 
Strategies of Design Patterns 

Overview 

Previously, I described how design patterns can be used at both the 
local and global levels. At local levels, patterns tell us how to solve 
particular problems within the context of the patterns. At global 
levels, patterns create a map of how the components of the applica-
tion interrelate with one another. One way to study design patterns is 
to learn how to use them more effectively at both the local and 
global levels. They will give you tools to get a better handle on your 
problem. 

Another way to study design patterns is learn their mechanisms 
and the principles and strategies that underlie them. Learning these 
will improve your abilities as an analyst and designer. You will 
know what to do even in situations when a design pattern has not 
yet been developed, because you will already have the building 
blocks needed to solve the problem. 

In this chapter, 

• I describe the open-closed principle, which underlies many 
design patterns. 

• I discuss the principle of designing from context, which was an 
initial objective of Alexander's patterns. 

• I discuss the principle of containing variation. 

In this chapter 
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Extend software 
capabilities without 
changing it 

The Open-Closed Principle 

Software clearly needs to be extensible. However, making changes to 
software runs the risk of introducing problems. This dilemma led 
Bertrand Meyer to propose the open-closed principle.1 To paraphrase 
this principle, the modules, methods, and classes should be open for 
extension, while closed for modification.2 In other words, we must 
design our software so that we can extend the capabilities of our 
software without changing it. 

As contradictory as this may sound at first, you have already seen 
examples of it. In the Bridge pattern, for instance, it is quite possible to 
add new implementations (that is, to extend the software) without 
changing any of the existing classes. 

  

Patterns are 

microcosms of 
Alexander's 

philosophy 

The Principle of Designing from Context 

Alexander tells us to design from context, to create the big picture 
before designing the details in which our pieces appear. Most design 
patterns follow this approach, some to a greater extent than others. 
Of the four patterns I have described so far, the Bridge pattern is the 
best example of this. 

Refer to the Bridge pattern diagram in Chapter 9, "The Bridge Pat-
tern," (see Figure 9-13). When deciding how to design the Imple -
mentation classes, think about their context: the way that the 
classes derived from the Abstraction class will use them.  

For example, if I were writing a system that needed to draw shapes 
on different types of hardware and that therefore required different 
implementations, I would use a Bridge pattern. The Bridge tells me 
that the shapes will use my implementations (that is, the drawing 

1. Meyer, B., Object-Oriented Software Construction, Upper Saddle River, N.J.: Prentice 
Hall, 1997, p. 57. 

2. See this book's Web site for a link to "The Open-Closed Principle," an excellent 
article by Robert C. Martin. Go to http://www.netobjectives.com/dpexplained. 
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programs I will write) through a common interface. Designing from 
context, as Alexander would have, means that I should first look at 
the requirements of my shapes— that is, what am I going to have to 
draw? These shapes will determine the required behaviors for my 
implementations. For example, the imple mentations (the drawing 
programs) may have to draw lines, circles, and so forth. 

By using commonality/variability analysis in conjunction with the 
context within which my classes occur, I can simultaneously see 
both the cases I must handle now and possible future cases. I can 
then decide how generalized I want to make the implementations 
based on the cost of extra generalization. This often leads to a more 
general implementation than I would have thought of otherwise, 
but with only marginally higher cost. 

For example, when looking at my needs to draw shapes, I might 
readily identify lines and circles as requirements. If I ask myself, 
"What shapes do I not support with lines and circles," I might 
notice that I would not be able to implement ellipses. Now I have a 
choice: 

Advantages to 

designing from 

context 

  

• Implement a way to draw ellipses in addition to the lines and 
circles. 

• Realize that ellipses are a generalized case of circles and imple  
ment them instead of circles. 

• Don't implement ellipses if the cost is greater than the per 
ceived gain. 

The prior example illustrates another important concept in design: 
just because an opportunity exists doesn't mean it has to be pur sued. 
My experience with design patterns is that they give me insights 
into my problem domains. However, I don't always (nor even 
usually) act on these insights by writing for situations that have not 
yet arisen. However, by helping me design from context, 

Identifying 
opportunities 

doesn 't mean 

having to follow 

them 
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the patterns themselves allow me to anticipate possible variation 
because I have divided my system into well-behaved classes, 
thereby making changes easier to accommodate. Design patterns 
help me see where variations may occur, not so much which partic -
ular variations will occur. The well-defined interface I use to contain 
my current variations often contains the impacts of new 
requirements just as well. 

The context of the 
Abstract Factory 

The Abstract Factory is another good example of designing by con-
text. I may understand early on that a factory object of some sort 
will be used to coordinate the instantiation of families (or sets) of 
objects. However, there are many different ways to implement it as 
follows. 

  

For. . .  The Abstract Factory Says ... 
  

Using derived classes  

Using a single object with 
switches  

Using a configuration file 
with switches  

Using a configuration file 
with RTTI 
(runtime-type-identificati
on) 

The classic Abstract Factory implementation 
requires me to implement a derivation for 
each set that I need. This is a little cumber-
some but has the advantage of allowing me 
to add new classes without changing any of 
my existing classes. 

If I am willing to change the Abstract Factory 
class as needed, I can simply have one 
object that contains all of the rules. While 
this doesn't follow the open-closed principle, 
it does contain all of my rules in one place 
and is not hard to maintain.  

This is more flexible than the prior case, but 
still requires modifying the code at times. 

RTTI includes a way of instantiating objects 
based on the name of the object placed in a 
string. Implementations of this sort have 
great flexibility in that new classes and new 
combinations can be added without having 
to change any code.  



Chapter 13   •   The Principles and Strategies of Design Patterns       221 

With all of these choices, how do you decide which one to use to 
implement the Abstract Factory? Decide from the context in which 
it appears. Each of the four cases just shown has advantages over 
the others, depending upon factors such as 

• The likelihood of future variation 

• The importance of not modifying our current system 

• Who controls the sets to be created (us or another development 
group) 

• The language in use 

• The availability of a database or configuration file  

This list is not complete, nor even is the list of implementation pos-
sibilities. What should be evident to you, however, is that trying to 
decide how to implement an Abstract Factory without understand-
ing how it will be used (that is, without understanding its context) is 
a fool's errand. 

How to decide? 

From the context 

  

How to make design decisions. 

When trying to decide between alternative implementations, 
many developers ask the question, "Which of these implemen-
tations is better?" This is not the best question to ask. The prob-
lem is that often one implementation is not inherently better 
than another. A better question is to ask, for each alternative, 
"Under what circumstances would this alternative be better 
than the other alternative?" Then ask, "Which of these circum-
stance is most like my problem domain?" It is a small matter of 
stopping and stepping back. Using this approach tends to keep 
me more aware of the variation and scalability issues in my 
problem domain. 
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The context of the 

Adapter 

The context of the 

Facade 

A word of warning 

The Adapter pattern illustrates design from context because it 
almost always shows up within a context. By definition, an Adapter 
is used to convert an existing interface into another interface. The 
obvious question is, "How do I know what to convert the existing 
interface to?" You typically don't until the context is presented 
(that is, the class to which you are adapting). 

I have already shown that Adapters can be used to adapt a class to 
fit the role of a pattern that is present. This was the case in my 
CAD/CAM problem, where I had an existing implementation that 
needed to be adapted into my Bridge-driven implementation. 

The Facade pattern is very similar to the Adapter pattern in terms of 
context. Typically, it is defined in the context of other patterns or 
classes. That is, I must wait until I can see who wants to use the 
Facade in order to design its interface. 

Early on in my use of patterns I tended to think I could always find 
which patterns created context for others. In Alexander's A Pattern 
Language, he is able to do just that with patterns in architecture. 
Since many people are talking about pattern languages for software, 
I wondered, "Why can't I?" It seems pretty clear that Adapters and 
Facades would always be defined in the context of something else. 
Right? 

Wrong. 

One great advantage of being a software developer who also 
teaches is that I have the opportunity to get involved in many more 
projects than I could possibly be involved in as a developer only. 
Early in my teachings of design patterns I thought Adapters and 
Facades would always come after other noncreational patterns in 
the order of defining context. In fact, they usually do. However, 
some systems have the requirement of building to a particular 
interface. In this case, it is a Facade or an Adapter (just one of many in 
the system, of course) that may be the seniormost pattern. 
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The Principle of Containing Variation 

Several people have remarked about a certain similarity in all of the 
designs they have seen me create: my inheritance hierarchies rarely 
go more than two levels of classes deep. Those that do typically fit 
into a design pattern structure that requires two levels as a base of 
the abstract classes (the Decorator pattern, discussed in Chapter 15, 
is an example that uses three levels). 

The reason for this is that one of my design goals is never to have a 
class contain two things that are varying that are somehow coupled 
to each other. The patterns I have described so far do illustrate dif-
ferent ways of containing variation effectively. 

• 

The Bridge pattern is an excellent example of contained variation. 
The implementations present in the Bridge pattern are all different 
but are accessed through a common interface. New implementa-
tions can be accommodated by implementing them within this 
interface. 

The Abstract Factory contains the variation of which sets or families 
of objects can be instantiated. There are many different ways of 
implementing this pattern. It is useful to note that even if one 
implementation is initially chosen and then it is determined 
another way would have been better, the implementation can be 
changed without affecting any other part of the system (since the 
interface for the factory does not change, only the way it is imple -
mented). Thus, the notion of the Abstract Factory itself (imple -
menting to an interface) hides all of the variations of how to create 
the objects. 

The Adapter pattern is a tool to be used to take disparate objects 
and give them a common interface. This is often needed now that I 
am designing to interfaces as called for in many patterns. 

A note on my designs 

Containing 

variation in the 

Bridge pattern  

Containing 
variation in the 

Abstract Factory 

Containing variation 

in the Adapter 
pattern  
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Containing 
variation in the 
Facade pattern 

Not just about 
containing variation 

The Facade typically does not contain variation. However, I have 
seen many cases where a Facade was used to work with a particular 
subsystem. Then, when another subsystem came along, a Facade 
for the new subsystem was built with the same interface. This new 
class was a combination Facade and Adapter in that the primary 
motivation was simplification, but now had the added constraint of 
being the same as the one used before so none of the client objects 
would need to change. Using a Facade this way hides variations in 
the subsystems being used. 

Patterns are not just about containing variation, however. They also 
identify relationships between variations. I will show more about 
this in the next section of this book. Referring to the Bridge pattern 
again, note that the pattern not only defines and contains the varia -
tions in the abstraction and implementation, but also defines the 
relationship between the two variations. 

Summary 

In this chapter In this chapter, I have shown how patterns illustrate two powerful 
design strategies: 

• Design from context 

• Contain variations in classes 

These strategies allow us to defer decisions until we can see the 
ramifications of these decisions. Looking at the context from which 
we are designing gives us better designs. 

By containing variation, I can accommodate future variations that 
may arise but would not be accommodated when I do not try to 
make my designs more general-purpose. This is crit ical for those 
projects that do not have all of the resources you would like to have 
(in other words, all projects). By containing variation appropriately, 
I can implement only those features I need without sacrificing 
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future quality. Trying to figure out and accommodate all possible 
variations typically does not lead to better systems but often leads to 
no system at all. This is called paralysis by analysis. 



PART V 

Handling Variations with 
Design Patterns 

Part Overview  

In this part, I work through another case study. In this case study, I    In this part 
will consider the requirements for the problem one at a time, rather 
than specifying every requirement up front. I will describe a system 

that is currently working when a new requirement comes in that 
forces me to find the best way to modify the code. I will use this  
process to present a few new design patterns— one for each new  

requirement. 

Chapter      Discusses These Topics 

14 The Strategy pattern: How to handle varying algorithms and 
business rules. 

15 The Decorator pattern: How to dynamically add behavior 
before or after an object's current behavior. 

16 The Singleton pattern and the Double-Checked Locking 
pattern: How to ensure not more than one instance of a class 
is ever instantiated, even in a multithreaded environment. 

17 The Observer pattern: How to let one part of a system know 
when an event takes place in another.  

18 The Template Method pattern: What to do when you have 
different cases that use essentially the same procedure, but 
their steps must be implemented in slightly different ways. 

19 The Factory Method pattern: How to defer instantiation of 
particular objects to derived classes. 

20 The Analysis Matrix: How to track multiple variations that are 
present in your problem domain and map them into patterns. 

227 
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When a new requirement is introduced to the problem, I will look at 
the different alternatives I could use, such as: 

• Using switches in the code 

• Specialization with inheritance 

• Encapsulating what varies and containing it or using a refer 
ence to it 

By looking at these alternatives, I show that there are similarities 
among many of the patterns: often, different patterns will approach 
handling variation and new requirements in a similar fashion. 



CHAPTER 14 

  

The Strategy Pattern 
 

  

Overview 

This chapter introduces a new case study, which comes from the 
area of e-tailing (electronic retailing over the Internet). It also begins 
a solution using the Strategy pattern. The solution to this case study 
will continue to evolve through Chapter 20, "The Analysis Matrix." 

In this chapter, 

• I describe an approach to handling new requirements. 

• I introduce the new case study. 

• I describe the Strategy pattern and show how it handles a new 
requirement in the case study. 

• I describe the key features of the Strategy pattern. 

In this chapter 

 

  

An Approach to Handling 
New Requirements 

Many times in life and many times in software applications, you 
have to make choices about the general approach to performing a 
task or solving a problem. Most of us have learned that taking the 
easiest route in the short run can lead to serious complications in 
the long run. For example, none of us would ignore oil changes for 
our car beyond a certain point. True, I may not change the oil every 
3,000 miles, but I also do not wait until 30,000 miles before changing 
the oil (if I did so, there would be no need to change the oil any more: 
the car would not work!). Or consider desktop filing— the technique 
many of us have of using the tops of our desks as a filing cabinet. It 
works well in the short run, but in the long run, it  

Disaster often comes 

in the long run from 

suboptimal decisions 
in the short run 
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This is true in 
software as well: we 

focus on immediate 

concerns and ignore 

the longer term 

becomes tough to find things as the piles grow. Disaster often comes 
in the long run from suboptimal decisions made in the short run. 

Unfortunately, when it comes to software development, many peo-
ple have not learned these lessons yet. Many projects are only con-
cerned with handling immediate, pressing needs, without concern 
for future maintenance. There are several reasons projects tend to 
ignore long-term issues like ease of maintenance or ability to 
change. Common excuses include 

• "We really can't figure out how the new requirements are  
going to change." 

• "If we try to see how things will change, we'll stay in analysis 
forever." 

• "If we try to write our software so it can add new functionality, 
we'll stay in design forever." 

• "We don't have the time or budget to do so." 

The choices seem to be 

• Overanalyze or overdesign— I like to call this "paralysis by anal 
ysis," or 

• Just jump in, write the code without concern for long-term 
issues, and then get on another project before this short 
sightedness causes too many problems. I like to call this "aban 
don (by) ship (date)!" 

Since management is under pressure to deliver and not to main tain, 
maybe these results are not surprising. However, with a moment's 
reflection, it becomes apparent that there is an underlying belief 
system that prevents many software developers from seeing other 
alternatives— the belief that designing for change is more costly 
than designing without considering change. 
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But this is not necessarily the case. Indeed, the opposite is often 
true: When you step back to consider how your system may change 
over time, a better design usually becomes apparent to you— in vir-
tually the same amount of time that would be required to do a 
"standard" get-it-done-now design. 

The approach I use in the following this case study considers how    Designing for change 

systems may change. However, it is important to note that I will be 

anticipating that changes will occur and look to see where they will 
occur. I will not be trying to anticipate the exact nature of the  
change. This approach is based on the principles described in the  

Gang of Four book: 

• "Program to an interface, not an implementation."1 

• "Favor object composition over class inheritance."2 

• "Consider what should be variable in your design. This approach is 
the opposite of focusing on the cause of redesign. Instead of 
considering what might force a change to a design, consider 
what you want to be able to change without redesign. The  
focus here is on encapsulating the concept that varies, a theme 
of many design patterns."3 

What I suggest is that when faced with modifying code to handle a 
new requirement, you should at least consider following these 
strategies. If following these strategies will not cost significantly 
more to design and implement, then use them. You can expect a 
long-term benefit from doing so, with only a modest short-term 
cost (if any). 

1. Gamma, E., Helm, R., Johnson, R., Vlissides, J., Design Patterns: Elements of 
Reusable Object-Oriented Software, Reading, Mass.: Addison-Wesley, 1995, p. 18. 

2. ibid, p. 20. 
3. ibid, p. 29. 
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I am not proposing to follow these strategies blindly, however. I can 
test the value of an alternative design by examining how well it 
conforms to the good principles of object-oriented design. This is 
essentially the same approach I used in deriving the Bridge pattern 
in Chapter 9, "The Bridge Pattern." In that chapter, I measured the 
quality of alternative designs by seeing which one followed 
object-oriented principles the best. 

A motivating 
example: an e-tail 
system 

Initial Requirements of the Case Study 

Suppose I am writing an e-tail system that supports sales in the 
United States. The general architecture has a controller object that 
handles sales requests. It identifies when a sales order is being 
requested and hands the request off to a SalesOrder object to pro-
cess the order. 

 

 
Figure 14-1   Sales order architecture for an e-tail system. 

Some features of the      The functions of SalesOrder include system 

• Allow for filling out the order with a GUI. 

• Handle tax calculations. 

• Process the order. Print a sales receipt. 

Some of these functions are likely to be implemented with the help 
of other objects. For example, SalesOrder would not necessarily 
print itself; rather, it serves as a holder for information about sales 

The system looks something like Figure 14-1. 
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orders. A particular SalesOrder object could call a SalesTicket 
object that prints the SalesOrder. 

Handling New Requirements  

In the process of writing this application, suppose I receive a new 
requirement to change the way I have to handle taxes. Now, I have to 
be able to handle taxes on orders from customers outside the United 
States. At a minimum, I will need to add new rules for computing 
these taxes. 

How can I handle these new rules? I could attempt to reuse the 
existing SalesOrder object, processing this new situation like a 
new kind of sales order, only with a different set of taxation rules. 
For example, for Canadian sales, I could derive a new class called 
CanadianSalesOrder from SalesOrder that would override the 
tax rules. I show this solution in Figure 14-2. 

New requirement for 
taxation rules 

One approach: reuse 
the SalesOrder  

object 

 
Figure 14-2   Sales order architecture for an e-commerce system. 

Now, design patterns repeatedly demonstrate a fundamental rule of  . . .  but this violates a 
design patterns: "Favor object composition over class inheritance."4 fundamental rule of 
The solution in Figure 14-2 does just the opposite! In other words, I design patterns 

4.  ibid, p. 20. 
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have handled the variation in tax rules by using inheritance to 
derive a new class with the new rule. 

Take a different How could I approach this differently? Following the rules I stated 
approach above: attempt to "consider what should be variable in your design" 

. . . and "encapsulate the concept that varies."5 

Following this two-step approach, I should do the following: 

1. Find what varies and encapsulate it in a class of its own. 

2. Contain this class in another class. 

Step 1: Find 
what varies and 
encapsulate it 

In this example, I have already identified that the tax rules are 
varying. To encapsulate this would mean creating an abstract class 
that defines how to accomplish the task conceptually, and then 
derive concrete classes for each of the variations. In other words, I 
could create a CalcTax object that defines the interface to accom-
plish this task. I could then derive the specific versions needed. I 
show this, in Figure 14-3. 

 
Figure 14-3   Encapsulating tax rules. 

5.  ibid, p. 29. 
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Continuing on, I now use composition instead of inheritance. This    Step 2: Favor 
means, instead of making different versions of sales orders (using    composition 
inheritance), I will contain the variation with composition. That is, I will have one 
SalesOrder class and have it contain the CalcTax class to handle the variation. I 
show this in Figure 14-4. 

 
Figure 14-4   Favoring composition over inheritance. 

UML Diagrams 

In the UML, it is possible to define parameters in the methods. 
This is done by showing a parameter and its type in the parenthesis 
of the method. 

Thus, in Figure 14-4, the taxAmount method has three parameters: 

• itemSold of type Salable  

• qty of type double  

• price of type double  

All of these are inputs denoted by the "in." The taxAmount 
method also returns a double. 
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How this works I have defined a fairly generic interface for the CalcTax object. Pre- 
sumably, I would have a Saleable class that defines saleable items 
(and how they are taxed). The SalesOrder object would give that 
to the CalcTax object, along with the quantity and price. This 
would be all the information the CalcTax object would need.  

Improves cohesion, 
aids flexibility  

Another advantage of this approach is that cohesion has improved. 
SalesTax is handled in its own class. Another advantage is that as I 
get new tax requirements, I simply need to derive a new class from 
CalcTax that implements them.  

Easier to shift Finally, it becomes easier to shift responsibilities. For example, in 
responsibilities the inheritance-based approach, I had to have the TaskControl- 

ler decide which type of SalesOrder to use. With the new struc-
ture, I can have either the TaskController do it or the 
SalesOrder do it. To have the SalesOrder do it, I would have 
some configuration object that would let it know which tax object 
to use (probably the same one the TaskController was using). I 
show this in Figure 14-5. 

 
Figure 14-5   The SalesOrder object using Configuration to tell it 
which CalcTax to use. 
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This approach allows the business rule to vary independently from 
the SalesOrder object that uses it. Note how this works well for 
current variations I have as well as any future ones that might 
come along. Essentially, this use of encapsulating an algorithm in 
an abstract class (CalcTax) and using one of them at a time inter-
changeably is the Strategy pattern. 

The Strategy pattern  

  

The Strategy Pattern 

According to the Gang of Four, the Strategy pattern's intent is to 

Define a family of algorithms, encapsulate each one, and 
make them interchangeable. Strategy lets the algorithm 
vary independently from the clients that use it.6 

The Strategy pattern is based on a few principles: 

• Objects have responsibilities. 

• Different, specific implementations of these responsibilities are 
manifested through the use of polymorphism. 

• There is a need to manage several different implementations of 
what is, conceptually, the same algorithm. 

• It is a good design practice to separate behaviors that occur in 
the problem domain from each other— that is, to decouple  
them. This allows me to change the class responsible for one 
behavior without adversely affecting another. 

The intent, according 

to the Gang of Four 

The motivations of 

the Strategy pattern  

  

6.  ibid, p. 315. 
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The Strategy Pattern: Key Features 

Intent Allows you to use different business rules or algorithms depending upon the 
context in which they occur.  

Problem The selection of an algorithm that needs to be applied depends upon the 
client making the request or the data being acted upon. If you simply have a 
rule in place that does not change, you do not need a Strategy pattern.  

Solution Separates the selection of algorithm from the implementation of the algo- 
rithm. Allows for the selection to be made based upon context. 

Participants and        • The strategy specifies how the different algorithms are used.  
Collaborators • The concreteStrategies implement these different algorithms. 

• The Context uses the specific ConcreteStrategy with a reference of 
type Strategy. The strategy and Context interact to implement the 
chosen algorithm (sometimes the strategy must query the Context). 
The Context forwards requests from its Client to the Strategy. 

Consequences         • The Strategy pattern defines a family of algorithms. 
• Switches and/or conditionals can be eliminated.  
• You must invoke all algorithms in the same way (they must all have the 

same interface). The interaction between the ConcreteStrategies 
and the Context may require the addition of getstate type methods 
to the Context.  

Implementation         Have the class that uses the algorithm (the Context) contain an abstract 
class (the stragegy) that has an abstract method specifying how to call the 
algorithm. Each derived class implements the algorithm as needed. Note: 
this method wouldn't be abstract if you wanted to have some default behavior. 

Note: In the prototypical Strategy pattern, the responsibility for selecting the 
particular implementation to use is done by the Client object and is given 
to the context of the Strategy pattern.  

 
Figure 14-6   Standard, simplified view of the Strategy pattern. 
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Field Notes: Using the Strategy Pattern 

I had been using the e-tail example in my pattern classes when 
someone asked, "Are you aware that in England people over a cer-
tain age don't get taxed on food?" I wasn't aware of this and the 
interface for the CalcTax object did not handle this case. I could 
handle this in at least one of three ways: 

, 

1. Pass the age of the Customer into the CalcTax object and use 
it if needed. 

2. Be more general by passing in the Customer object itself and 
querying it if needed. 

3. Be more general still by passing a reference to the SalesOrder 
object (that is, this) and letting the CalcTax object query it. 

While it is true I have to modify the SalesOrder and CalcTax 
classes to handle this case, it is clear how to do this. I am not likely to 
introduce a problem because of this. 

Technically, the Strategy pattern is about encapsulating algorithms. 
However, in practice, I have found that it can be used for encapsu-
lating virtually any kind of rule. In general, when I am doing analy sis 
and I hear about applying different business rules at different times, 
I consider the possibility of a Strategy pattern handling this variation 
for me. 

The limits proves the 
pattern 

Encapsulating 
business rules 

The Strategy pattern requires that the algorithms (business rules)     Coupling between 
being encapsulated now lie outside of the class that is using them    context and strategies 
(the Context). This means that the information needed by the strategies must either be 
passed in or obtained in some other manner. 

The only serious drawback I have found with the Strategy pattern is  Ways of eliminating 

the number of additional classes I have to create. While well worth class explosions with 
the cost, there are a few things I have done to minimize this when I the Strategy pattern 
have control of all of the strategies. In this situation, if I am using 
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C++, I might have the abstract strategy header file contain all of the 
header files for the concrete strategies. I also have the abstract strat-
egy cpp file contain the code for the concrete strategies. If I am 
using Java, I use inner classes in the abstract strategy class to contain 
all of the concrete strategies. I do not do this if I do not have control 
over all of the strategies; that is, if other programmers need to 
implement their own algorithms. 

Summary  

In this chapter The Strategy pattern is a way to define a family of algorithms. Con- 
ceptually, all of these algorithms do the same things. They just have 
different implementations. 

I showed an example that used a family of tax calculation algo-
rithms. In an international e-tail system, there might be different 
tax algorithms to use for different countries. Strategy would allow 
me to encapsulate these rules in one abstract class and have a family 
of concrete derivations. 

By deriving all the different ways of performing the algorithm from 
an abstract class, the main module (SalesOrder in the example 
above) does not need to worry about which of many possibilities is 
actually in use. This allows for new variations but also creates the 
need to manage these variations— a challenge I will discuss in 
Chapter 20, 'The Analysis Matrix." 



CHAPTER 15 

The Decorator Pattern 

Overview 

This chapter continues the e-tailing case study introduced in Chap-    In this chapter 
ter 14, "The Strategy Pattern." 

In this chapter, 

• I describe a new requirement for the case study: Add header 
and footer information to the printed sales ticket. 

• I show how the Decorator pattern handles the requirement 
flexibly. 

• I discuss how the Decorator pattern can be used to handle  
input/output (especially Java I/O). 

• I describe the key features of the Decorator pattern. 

• I describe some of my experience using the Decorator pattern 
in practice. 

A Little More Detail 

Figure 14-2 showed the basic structure of the case study. Figure    Expanding the 
15-1 shows this structure in more detail. Here, I show that the    diagram 
SalesOrder object uses a SalesTicket object to print a sales ticket. 

As you saw in Chapter 14, SalesOrder uses a CalcTax object to 
calculate the tax on the order. To implement the printing function, 
SalesOrder calls the SalesTicket object, requesting that it print 
the ticket. This is a fine, reasonably modular design. 
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Figure 15-1   SalesOrder using SalesTicket. 

New requirement: 
add a header 

One approach: 
use switches in 
SalesTicket 

In the process of writing the application, suppose I get a new 
requirement to add header information to the SalesTicket. 

How can I handle this new requirement? If I am writing the system to 
be used by just one company, it may be easiest simply to add the 
control of headers and footers in the SalesTicket class. This is 
shown in Figure 15-2. 

 
Figure 15-2   SalesOrder using SalesTicket with different options. 
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In this solution, I have put the control in SalesTicket, with flags 
saying whether it is to print the headers or the footers. 

This works quite well if I do not have to deal with a lot of options or if 
the sales orders using these headers do not change. 

If I have to deal with many different types of headers and footers, 
printing only one each time, then I might consider using one Strategy 
pattern for the header and another Strategy pattern for the footer. 

What happens if I have to print more than one header and/or footer 
at a time? Or what if the order of the headers and/or footers needs to 
change? The number of combinations can quickly overwhelm. 

The approach is not 
flexible  

  

In situations like this, the Decorator pattern can be very useful. 
Instead of controlling added functionality by having a control 
method, the Decorator pattern says to control it by chaining 
together the functions desired in the correct order needed. The Dec-
orator pattern separates the dynamic building of this chain of func-
tionality from the client that uses it, in this case, the SalesOrder. 

The Decorator 
pattern helps 

  

The Decorator Pattern 

According to Gang of Four, the Decorator pattern's intent is to 

Attach additional responsibilities to an object dynami-
cally. Decorators provide a flexible alternative to sub-
classing for extending functionality.1 

The Decorator pattern works by allowing me to create a chain of 
objects that starts with the decorator objects— the objects responsible 
for the new function— and ends with the original object. Figure 15-3 
illustrates this. 

The intent, accord-
ing to the Gang of 
Four 

How it works 

  

1.   Gamma, E., Helm, R., Johnson, R., Vlissides, J., Design Patterns: Elements of Reusable 
Object-Oriented Software, Reading, Mass.: Addison-Wesley, 1995, p. 315. 
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The Decorator 
pattern is a chain of 
objects 

Figure 15-3   The Decorator chain. 

The class diagram of the Decorator pattern in Figure 15-4 implies the 
chain of objects shown in Figure 15-3. Each chain starts with a Com-
ponent (a ConcreteComponent or a Decorator). Each Decorator 
is followed either by another Decorator or by the original Con-
creteComponent. A ConcreteComponent always ends the chain.  

  

 

Figure 15-4   The Decorator pattern class diagram. 

For example, in Figure 15-4, ConcreteDecoratorB performs its 
Operation and then calls the Operation method in Decorator. This 
calls ConcreteDecoratorB's trailing Component's Operation.  

In this case 

Applying the Decorator 
Pattern to the Case Study 

In the case study, the SalesTicket is the ConcreteComponent. 
The concrete decorators are the headers and footers. Figure 15-5 
shows the application of the Decorator pattern to the case study. 
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Figure 15-5   Setting up headers and footers to look like a report. 

Figure 15-6 shows the application of Decorator to one header and 
one footer. 

The pattern 

instantiated  

 
Figure 15-6   An example Decorator object diagram. 

Each Decorator object wraps its new function around its trailing    How it works: object. 
Each Decorator performs its added function either before its    Decorators wrap decorated 
function (for headers) or after it (for footers). The easiest    their trailing object way to see 
how it works is to look at code for a specific example and walk through it. See Example 
15-1. 
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Example 15-1 Java Code Fragment: Decorator 

class SalesTicket extends Component 
{ public void prtTicket () { 

// sales ticket printing code here 
} 

abstract class Decorator extends Component 
{ private Component myComp; public Decorator 
(Component myC) { myComp= myC; 
} 
public void prtTicket () { if 

(myComp != null) 
myComp.prtTicket(); }

 } 
class Headerl extends Decorator 
{ public void prtTicket () { 

// place printing header 1 code here 
super.prtTicket(); } } 
class Header2 extends Decorator 
{ public void prtTicket () { 

// place printing header 2 code here 
super.prtTicket(); } } 
class Footerl extends Decorator 
{ public void prtReport () 
{ super.prtTicket(); 
// place printing footer 1 code here } }  

class Footer2 extends Decorator 
{ public void prtReport () 
{ super.prtTicket(); 
// place printing footer 2 code here } }  

class SalesOrder { void 
prtTicket () { 

(continued) 
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Example 15 -1   Java Code Fragment: Decorator (continued)  

Component myST; 
// Get chain of Decorators and SalesTicket built by 
// another object that knows the rules to use. 
// This may be done in constructor instead of 
// each time this is called. 
myST= Configuration.getSalesTicket() 

// Print Ticket with headers and footers as needed 
myST.prtTicket 0 ; } } 

  

If I want the sales ticket to look like: 

HEADER 1 

SALES TICKET 

FOOTER 1 

What happens in 

the code 

Then Configuration.getsalesTicket returns 

re turn(    new Header l (    new Footer l (   new SalesTicket ( ) ) } ;  

This creates a Headerl object trailed by a Footerl object trailed by a 
SalesTicket object. 

If I want the sales ticket to look like: 

HEADER 1 
HEADER 2 SALES 
TICKET FOOTER 1 

Then Configuration.getsalesTicket returns 

return( new Headerl( new Header2 (new Footerl( 
new SalesTicket ())}); 
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This creates a Headerl object trailed by a Header2 object trailed by a 
Footerl object trailed by a SalesTicket object.  

Decomposing by The Decorator pattern helps to decompose the problem into two 

responsibilities parts: 

• How to implement the objects that give the new functionality 

• How to organize the objects for each special case 

This allows me to separate implementing the Decorators from the 
object that determines how they are used. This increases cohesion 
because each of the Decorators is only concerned with the func tion 
it adds— not in how it is added to the chain. 

Stream I/O 

Another Example: Input/Output 

A common use for the Decorator pattern is in stream I/O. Let's look at 
stream I/O a little before seeing how the pattern can be used here. 
I will limit the discussion to input since output works in an 
analogous way (if you see how it works in one direction, it should be 
clear how it works in the other direction). For any particular stream 
input, there is exactly one source, but there can be any number 
(including zero) of actions to perform on the input stream. For 
example, I can read from 

• A file 

• A socket and then decrypt the incoming stream 

• A file and then decompress the incoming data 

• A string 

• A file, decompress the input, and then decrypt it 

Depending upon how the data were sent (or stored) any combination 
of behaviors is possible. Think of it this way: Any source can be 
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decorated with any combination of behaviors. Some of the possibil-
ities available for stream input are shown in Table 15-1. 

Developers in object-oriented languages can take advantage of this 
by having source and behavior objects derive from a common 
abstract class. Each behavior object can be given its source or prior 
behavior in its constructor. A chain of actions is then built as the 
objects themselves are instantiated (each is given a reference to its 
trailing object). The sources derive from ConcreteComponent (see 
Figure 15-4), while the behaviors are decorators. Note that 
Con-creteComponent is now a misnomer because it is now 
abstract. 

Languages reflect 
this 

Table 15-1     Kinds of Sources and Behaviors 

  

Sources Behaviors   

String 

File 

Socket (TCP/IP) 

Serial port 

Parallel port  

Keyboard 

Buffered input  

Run checksum 

Unzip 

Decrypt (any number of ways) 

Selection filters (any number of ways) 

For example, to get the behavior "read from a file, decompress the 
input, and then decrypt it," do the following: 

1. Build the decorator chain by doing the following: 

a. Instantiate a file object. 

b. Pass a reference to it to the constructor of a decompression 
object. 

c. Pass a reference to that to the constructor of a decryption 
object. 
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2. Read, decompress, and decrypt the data— all transparently to 
the client object that is using it. The client merely knows it has 
some sort of input stream object. 

If this client needs to get its input from a different source, the chain is 
created by instantiating a different source object using the same 
behavior objects. 

Understanding "The Complete Stream Zoo."* 

Java is notorious for a confusing array of stream inputs and asso-
ciated classes. It is much easier to understand these classes in the 
context of the Decorator pattern. The classes directly derived 
from java.io.InputStream (ByteArrayInputStream, 
FileInputStream, FilterInputStream, InputStream, 
ObjectInputStream, SequenceInputStream, and 
String-BufferInputstream) all play the role of the decorated 
object. All of the decorators derive from the 
FilterlnputStream (either directly or indirectly). 

Keeping the Decorator pattern in mind explains why the Java 
language requires chaining these objects together when they are 
instantiated— this gives programmers the ability to pick any 
number of combinations from the different behaviors available. 

Horstmann, C., Core Java— Volume 1— Fundamentals, Palo Alto, CA: Pearson 
Education, 1999, p. 627. 

Instantiating the 

chains 

Field Notes: Using the Decorator Pattern 

The power of the Decorator pattern requires that the instantiation 
of the chains of objects be completely decoupled from the Client 
objects that use it. This is most typically accomplished through the 
use of factory objects that instantiate the chains based upon some 
configuration information. 
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Intent 

Problem 

Solution 

Participants and 
Collaborators  

Consequences  

Implementation 

GoF Reference 

The Decorator Pattern: Key Features 

Attach additional responsibilities to an object dynamically. 

The object that you want to use does the basic functions you require. 
However, you may need to add some additional functionality to the object, 
occurring before or after the object's base functionality. Note that the Java 
foundation classes use the Decorator pattern extensively for I/O handling.  

Allows for extending the functionality of an object without resorting to sub-
classing.  

The ConcreteComponent is the class having function added to it by the 
Decorators. Sometimes classes derived from ConcreteComponent 
are used to provide the core functionality, in which case 
Concrete-Component is no longer concrete, but rather abstract. The 
Component defines the interface for all of these classes to use.  

Functionality that is to be added resides in small objects. The advantage is 
the ability to dynamically add this function before or after the functionality in 
the ConcreteComponent. Note: While a decorator may add its 
functionality before or after that which it decorates, the chain of instantia-
tion always ends with the ConcreteComponent. 

Create an abstract class that represents both the original class and the new 
functions to be added to the class. In the decorators, place the new function 
calls before or after the trailing calls to get the correct order.  

Pages 175-184. 

 
Figure 15-7   Standard, simplified view of the Decorator pattern. 



252       Part V   •    Handling Variations with Design Patterns 

Decorators in testing I have used the Decorator to wrap precondition and postcondition 
tests on an object to be tested with nice results. During test, the first 
object in the chain can do an extensive test of preconditions prior to 
calling its trailing object. Immediately after the trailing object call, 
the same object calls an extensive test of postconditions. If I have 
different tests I want to run at different times, I can keep each test in 
a different Decorator and then chain them together according to the 
battery of tests I want to run. 

Summary 

In this chapter The Decorator pattern is a way to add additional function(s) to an 

existing function dynamically. In practice, it requires building a 
chain of objects that give the desired behaviors. The first object in 
this chain is called by a Client that had nothing to do with the 
building of it. By keeping the creation of the chain independent 
from its use, the Client object is not affected by new requirements 
to add functionality. 

Supplement: C++ Code Examples 

Example 15-2 C++ Code Fragments 

class SalesTicket : public Component 
{ public: 

void prtlicket(); 
} 
SalesTicket::prtTicket() { 

// sales ticket printing code here 
} 
class Decorator : public Component 
{ public: 
virtual void prtTicket(); 
Decorator( Component *myC); 
private: 

Component *myComp; } 
(continued) 
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Example 15-2   C++ Code Fragments (continued) 

Decorator::Decorator(   Component   *myC)    
{ myComp= myC; 

} 
Decorator::prtTicket() { if 

(myComp != 0) 
myComp->prtTicket(); 

} 
class Headerl : public Decorator 
{ public: 
void prtTicketO ; 

} 
Headerl::prtTicket () { 

// place printing header 1 code here 
Decorator: :prtTicketO ; 

} 
class Header2 : public Decorator 
{ public: 
void prtTicketO ; 

} 
Header2::prtTicket (} { 

// place printing header 2 code here 
Decorator::prtTicket 0 ; 

} 
class Footerl : public Decorator 
{ public: 
void prtTicket(}; 

} 
Footerl::prtTicket (} { 
Decorator: :prtTicketO ; 
// place printing footer 1 code here 

} 
class Footer2 : public Decorator 
{ public: 
void prtTicketO; 

} 
Footer2::prtTicket (} { 
Decorator: :prtTicketO ; 
// place printing footer 2 code here 

} 
SalesOrder::prtTicket ()    {  

(continued) 
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Example 15-2   C++ Code Fragments (continued) 

Component *myST; 
// Get chain of Decorators and SalesTicket built by 
// another object that knows the rules to use. 
// This may be done in constructor instead of 
// each time this is called. 
myST= Configuration.getSalesTicket() 

// Print Ticket with headers and footers as needed 
myST->prtTicket(); } 



CHAPTER 16 

The Singleton Pattern and 

the Double-Checked 

Locking Pattern 

Overview  

This chapter continues the e-tailing case study discussed in Chapter    In this chapter 
14, "The Strategy Pattern" and Chapter 15, "The Decorator Pattern." 

In this chapter, 

• I introduce the Singleton pattern. 

• I describe the key features of the Singleton pattern. 

• I introduce a variant to the  Singleton called the Double - 
Checked Locking pattern. 

• I describe some of my experiences using the Singleton pattern 
in practice. 

The Singleton pattern and the Double -Checked Locking pattern are 
very simple and very common. Both are used to ensure that only 
one object of a particular class is instantiated. The distinction 
between the patterns is that the Singleton pattern is used in 
single-threaded applications while the Double -Checked Locking 
pattern is used in multithreaded applications.1 

1.  If you do not know what a multithreaded application is, don't worry; you need only 
concern yourself with the Singleton pattern at this time. 

255 
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The intent, 
according to the 

Gang of Four 

How the Singleton 
pattern works 

Introducing the Singleton Pattern 

According to the Gang of Four, the Singleton's intent is to 

Ensure a class only has one instance, and provide a 
global point of access to it.2 

The Singleton pattern works by having a special method that is 
used to instantiate the desired object. 

When this method is called, it checks to see if the object has 
already been instantiated. If it has, the method simply returns a 
reference to the object. If not, the method instantiates it and 
returns a reference to the new instance. 

To ensure that this is the only way to instantiate an object of 
this type, I define the constructor of this class to be protected or 
private. 

A motivating 

example: instantiate 

tax calculation 
strategies only once 

and only when 

needed 

Applying the Singleton Pattern 
to the Case Study 

In Chapter 14, I encapsulated the rules about taxes within strategy 
objects. I have to derive a CalcTax class for each possible tax calcu-
lation rule. This means that I need to use the same objects over and 
over again, just alternating between their uses. 

For performance reasons, I might not want to keep instantiating 
them and throwing them away again and again. And, while I could 
instantiate all of the possible strategies at the start, this could  

  

2.   Gamma, E., Helm, R., Johnson, R., Vlissides, J., Design Patterns: Elements of Reusable 
Object-Oriented Software, Reading, Mass.: Addison-Wesley, 1995, p. 127. 
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become inefficient if the number of strategies grew large. (Remember, 
I may have many other strategies throughout my application.) 
Instead, it would be best to instantiate them as needed, but only do 
the instantiation once. 

The problem is that I do not want to create a separate object to keep 
track of what I have already instantiated. Rather, I would like the 
objects themselves (that is, the strategies) be responsible for han-
dling their own single instantiation. 

This is the purpose of the Singleton pattern. It allows me to instan-
tiate an object only once, without requiring the client objects to be 
concerned with whether it already exists or not. 

Singleton makes 
objects responsible 
for themselves 

The Singleton could be implemented in code as shown in Example 
16-1. In this example, I create a method (getInstance) that will 
instantiate at most one USTax object. The Singleton protects against 
someone else instantiating the USTax object directly by making the 
constructor private, which means that no other object can access it. 

Example 16-1   Java Code Fragment: Singleton Pattern 

class USTax   { 
private static USTax instance; 
private USTax(): 
public static USTax getlnstance () { if 

(instance== null) 
instance= new USTax(); return 

instance; } } 
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The Singleton Pattern: Key Features 

Intent You want to have only one of an object but there is no global object that con- 
trols the instantiation of this object. 

Problem Several different client objects need to refer to the same thing and you want  
to ensure that you do not have more than one of them. 

Solution Guarantees one instance.  

Participants and        Clients create an get Instance of the Singleton solely through the 
Collaborators instance method.  

Consequences         Clients need not concern themselves whether an instance of the 
Singleton exists. This can be controlled from within the Singleton.  

Implementation         • Add a private static member of the class that refers to the desired object 
(initially, it is NULL).  

• Add a public static method that instantiates this class if this member is 
NULL (and sets this member's value) and then returns the value of this 
member. 

• Set the constructor's status to protected or private so that no one can 
directly instantiate this class and bypass the static constructor mechanism. 

GoF Reference         Pages 127-134. 

 
Figure 16-1    Standard, simplified view of the Singleton pattern. 

A Variant: The Double-Checked 
Locking Pattern 

Only for This pattern only applies to multithreaded applications. If you are 
multithreaded not involved with multithreaded applications you might want to 

applications skip this section. This section assumes that you have a basic under- 
standing of multithreaded issues, including synchronization. 



Chapter 16    •   The Singleton Pattern and the Double-Checked Locking Pattern    259 

A problem with the Singleton pattern may arise in multithreaded 
applications. 

Suppose two calls to getInstance () are made at exactly the same 
time. This can be very bad. Consider what can happen in this case: 

1. The first thread checks to see if the instance exists. It does not, 
so it goes into the part of the code that will create the first  
instance. 

2. However, before it has done that, suppose a second thread also 
looks to see if the instance member is NULL. Since the first 
thread hasn't created anything yet, the instance is still equal to 
NULL, so the second thread also goes into the code that will 
create an object. 

3. Both threads now perform a new on the Singleton object, 
thereby creating two objects. 

In a multithreaded 
mode, Singleton does 

not always work 

properly 

  

Is this a problem? It may or may not be. 

• If the Singleton is absolutely stateless, this may not be a problem. 

• In Java, the problem will simply be that we are taking up an 
extra bit of memory. 

• In C++, the program may create a memory leak, since it will 
only delete one of the objects when I have created two of them. 

• If the Singleton object has some state, subtle errors can creep 
in. For example, 

 

- If the object creates a connection, there will actually be two 
connections (one for each object). 

- If a counter is used, there will be two counters. 

It may be very difficult to find these problems. First of all, the dual 
creation is very intermittent— it usually won't happen. Second, it 
may not be obvious why the counts are off, as only one client object 

None, small, bad, or 
worse 
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Synchronizing the 
creation of the 

Singleton object  

will contain one of the Singleton objects while all of the other client 
objects will refer to the other Singleton. 

At first, it appears that all I need to do is synchronize the test for 
whether the Singleton object has been created. The only problem is 
that this synchronization may end up being a severe bottleneck, 
because all of the threads will have to wait for the check on 
whether the object already exists. 

  

A simple solution: 

double-checked 

locking 

Perhaps instead, I could put some synchronization code in after the if 
(instance== null) test. This will not work either. Since it would 
be possible that both calls could meet the NULL test and then attempt 
to synchronize, I could still end up making two Singleton objects, 
making them one at a time. 

The solution is to do a "synch" after the test for NULL and then 
check again to make sure the instance member has not yet been 
created. I show this in Example 16-2. This is called double-checked 
locking.3 The intent is to optimize away unnecessary locking. This 
synchronization check happens at most one time, so it will not be a 
bottleneck. 

The features of double-checked locking are as follows: 

• Unnecessary locking is avoided by wrapping the call to new 
with another conditional test. 

• Support for multithreaded environments. 

3.  Martin, R., Riehle, D., Buschmann, R, Pattern Language of Program Design, Reading, 
Mass.: Addison-Wesley, 1998, p. 363. 
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Example 16-2   Java Code Fragment: Instantiation Only 

class USTax extends  CalcTax   
{ private USTax  instance; private  
USTax   ( )    { 
} 
private synchronized static 
void doSync () { 
// just here for sync 

} 
public USTax getInstance() { if 

(instance== null) 
{ USTax.doSync(); if 
(instance== null) instance= 
new USTax(); 
} return 

instance; 
}

 } 

  

Field Notes: Using the Singleton and 
Double-Checked Locking Patterns 

If you know you are going to need an object and no performance 
issue requires you to defer instantiation of the object until it's 
needed, it is usually simpler to have a static member contain a ref-
erence to the object. 

In multithreaded applications, Singletons typically have to be 
thread safe (because the single object may be shared by multiple 
objects). This means having no data members but using only vari-
ables whose scope is no larger than a method. 

Only use when 

needed 

Typically stateless 

  

Summary 

The Singleton and Double -Checked Locking patterns are common 
patterns to use when you want to ensure that there is only one 
instance of an object. The Singleton is used in single -threaded 
applications while the Double -Checked Locking pattern is used in 
multithreaded applications. 

In this chapter 
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Supplement: C++ Code Examples  

Example 16-3   C++ Code Fragment: Singleton Pattern 

Class USTax 
{ public: 

static USTax* getlnstance(); 
private: 
USTax(}; 
static USTax* instance; 

} 
USTax::USTax () 

{ instance= 0; 
} 
USTax* USTax::getlnstance () { if 
(instance== 0) { 

instance= new USTax; 
} return 

instance; 
} 

Example 16-4 C++ Code Fragment: Double-Checked Locking Pattern 

class USTax : public CalcTax 
{ public: 
static USTax* getlnstance(}; 

private: 
USTax(); 
static USTax* instance; 

}; 
USTax::USTax () 

{ instance= 0; 
} 
USTax* USTax::getlnstance () { if 

(instance== 0) { 
// do sync here 
if (instance== 0) { 
} 

} 
return instance; 

} 
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The Observer Pattern 

Overview 

This chapter continues the e-tailing case study discussed in Chapters    In this chapter 14-16. 

In this chapter, 

• I introduce the categorization scheme of patterns. 

• I  introduce  the   Observer  pattern  by  discussing  additional 
requirements for the case study. 

• I apply the Observer pattern to the case study. 

• I describe the Observer pattern. 

• I describe the key features of the Observer pattern. 

• I describe some of my experiences using the Observer pattern 
in practice. 

Categories of Patterns 

There are many patterns to keep track of. To help sort this out, the    The GoF has three 
Gang of Four has grouped patterns into three general categories, as    categories shown in 
Table 17-1.1 

1.   Gamma, E., Helm, R., Johnson, R., Vlissides, J., Design Patterns: Elements of 
Reusable Object-Oriented Software, Reading, Mass.: Addison-Wesley, 1995, p. 10. 
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Table 17-1    Categories of Patterns 
  

Category Purpose Examples in This Book Use For 
  

Structural 

Behavioral 

Creational 

Bring together 
existing objects 

Give a way to 
manifest flexible 
(varying) behavior 

Create or 
instantiate objects 

Facade (Chapter 6) 
Adapter (Chapter 7) 

Bridge (Chapter 9) 
Decorator (Chapter 15) 

Strategy (Chapter 14) 

Handling interfaces  

Relating implementations 
to abstractions  

Containing variation 

  

A note on the 
classification of 
the Bridge and 
Decorator patterns 

When I first started studying design patterns, I was surprised to see 
the Bridge and Decorator patterns were structural patterns rather 
than behavioral patterns. After all, they seemed to be used to imple-
ment different behaviors. At the time, I simply did not understand 
the GoF's classification system. Structural patterns are for tying 
together existing function. In the Bridge pattern, we typically start 
with abstractions and implementations and then bind them together 
with the bridge. In the Decorator pattern, we have an original func-
tional class, and want to decorate it with additional functions. 

  

My "fourth" 
category: decoupling 

I have found it valuable to think of a fourth category of patterns, 
one whose primary purpose is to decouple objects from each other. 
One motivation for these is to allow for scalability or increased flex-
ibility. I call this category of patterns decoupling patterns. Since most 
of the patterns in the decoupling category belong to the Gang of 
Four's behavioral category, I could almost call them a subset of the 
behavioral category. I chose to make a fourth category simply 
because my intent in this book is to reflect how I look at patterns, 
focusing on their motivations— in this case, decoupling. 

Abstract Factory (Chapter 10)   Instantiating objects 
Singleton (Chapter 16) 
Double-Checked Locking 
(Chapter 16) 
Factory Method (Chapter 19) 



Chapter 17   •   The Observer Pattern       265 

I would not get too hung up on the whys and wherefores of the 
classifications. They are meant to give insights into what the pat-
terns are doing. 

This chapter discusses the Observer pattern, which is the best 
example of a decoupling pattern pattern there is. The Gang of Four 
classifies Observer as a Behavioral pattern. 

Observer is a 

decoupling 

(behavioral) pattern  

  

More Requirements for the Case Study 

In the process of writing the application, suppose I get a new 
requirement to take the following actions whenever a new cus-
tomer is entered into the system: 

New requirement: 
take actions for new 

customers 

• Send a welcome e-mail to the customer. 
•-    , .      ; . . . • ' -    t        i - 

• Verify the customer's address with the post office. , .,-, • 

Are these all of the requirements? Will things change in the future?     One approach 

If I am reasonably certain that I know every requirement, then I 
could solve the problem by hard-coding the notification behavior 
into the Customer class, such as shown in Figure 17-1. 

F
or example, using the same method that adds a new customer into 

the database, I will also make calls to the objects that generate wel-
come letters and verify post office addresses.  

 
Figure 17-1   Hard-coding the behaviors. 
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These classes have the following responsibilities: 

Class Responsibility 
  

Customer When a customer is added, this object will make calls 
to the other objects to have the corresponding actions 
take place. 

WelcomeLetter       Creates welcome letters for customers that let them 
know they were added to the system. 

AddrVerification      This object will verify the address of any customer that 
asks it to.  

The problem? The hard-coding approach works fine— the first time. But require- 
Requirements  ments always change. I know that another requirement will come  

always change that will require another change to Customer's behavior. For  

example, I might have to support different companies' welcome let-
ters, which would require a different Customer object for each 
company. Surely, I can do better. 

The intent, 
according to the 
Gang of Four 

What this means: 
Handling notifica-
tion automatically  

The Observer Pattern 

According to the Gang of Four, the intent of the Observer pattern is to 
"Define a one-to-many dependency between objects so that when 
one object changes state, all its dependents are notified and updated 
automatically."2 

Often, I have a set of objects that need to be notified whenever an 
event occurs. I want this notification to occur automatically. How-
ever, I do not want to change the broadcasting object everytime 
there is a change to the set of objects listening to the broadcast. 
(That would be like having to change a radio transmitter every time a 
new car radio comes to town.) I want to decouple the notify-ors and 
the notify-ees. 

2.  Gamma, E., Helm, R., Johnson, R., Vlissides, J., Design Patterns: Elements of 
Reusable Object-Oriented Software, Reading, Mass.: Addison-Wesley, 1995, p. 293. 
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This pattern is a very common one. It also goes by the names Depen-    A common pattern 
dents and Publish-Subscribe? and is analogous to the notify process in COM. It is 
implemented in Java with the Observer interface and the Observable class (more on 
these later). In rule-based, expert systems, they are often implemented with daemon 
rules. 

Applying the Observer to the Case Study 

My approach is to look in the problem for clues as to what is varying. 
Then, I attempt to encapsulate the variation. In the current case, I 
find: 

Two things are 
varying 

  

• Different kinds of objects — There is a list of objects that need 
to be notified of a change in state. These objects tend to belong 
to different classes. 

• Different interfaces— Since they belong to different classes, 
they tend to have different interfaces. 

First, I must identify all of the objects that want to be notified. I will 
call these the observers since they are waiting for an event to occur. 

I want all of the observers to have the same interface. If they do not 
have the same interface, then I would have to modify the sub-
ject— that is, the object that is triggering the event (for example, 
Customer), to handle each type of observer. 

By having all of the observers be of the same type, the subject can 
easily notify all of them. To get all of the observers to be of the same 
type, 

• In Java, I would probably implement this with an interface 
(either for flexibility or out of necessity). 

Step 1: Make the 
observers behave in 
the same way  

3.  ibid, p. 293. 
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• In C++, I would use single inheritance or multiple inheritance, as 
required. 

Step 2: Have the 
observers register 

themselves 

In most situations, I want the observers to be responsible for know-
ing what they are to watch for and I want the subject to be free 
from knowing which observers depend on it. To do this, I need to 
have a way for the observers to register themselves with the subject. 
Since all of the observers are of the same type, I must add two 
methods to the subject: 

  

Step 3: Notify the 
observers when the 

event occurs 

Step 4: Get the 
information from 

the subject 

How this works 

 

• attach (Observer)— adds the given Observer to its list of  
observers 

• detach (Observer)— removes the given Observer from its 
list of observers 

 

Now that the Subject has its Observers registered, it is a simple 
matter for the Subject to notify the Observers when the event 
occurs. To do this, each Observer implements a method called 
update. The Subject implements a notify method that goes 
through its list of Observers and calls this update method for each 
of them. The update method should contains the code to handle 
the event. 

But notifying each observer is not enough. An observer may need 
more information about the event beyond the simple fact that it has 
occurred. Therefore, I must also add method(s) to the subject that 
allow the observers to get whatever information they need. Figure 
17-2 shows this solution. 

In Figure 17-2, the classes relate to each other as follows: 

  

 1. The Observers attach themselves to the Customer class when 
they are instantiated. If the Observers need more information 
from the subject (Customer), the update method must be 
passed a reference to the calling object. 
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Figure 17-2   implementing Customer with Obs erver. 

Each observer calls getstate for information on the newly 
added Customer to see what it needs to do. Note: Typically, there 
would be several methods to get the needed information. 

Note in this case, we use static methods for attach and detach 
because observers want to be notified for all new Customers. When 
notified, they are passed the reference to the Customer created.  

Example 17-1 shows some of the code required to implement this. 

This approach allows me to add new Observers without affecting  Observer aids 
any existing classes. It also keeps everything loosely coupled. This  flexibility and keeps 

organization works if I have kept all of the objects responsible for things decoupled 
themselves. 

How well does this work if I get a new requirement? For example,    New requirement: 
what if I need to send a letter with coupons to customers located    send coupons, too 
within 20 miles of one of the company's "brick and mortar" stores. 

2. When a new Customer is added, the notify method calls 
these Observers. 
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Example 17-1   Java Code Frament: Observer Implemented 

class Customer { 
static private Vector myObs; 
static { 
myObs= new Vector(); 

} 
static void attach(Observer 
o){ myObs.addElement(o); 

} 
static void detach(Observer 
o){ myObs . remove (o) ; 

} 
public String getState () { 

// have other methods that will give the 
// required information } 

public void notifyObs () { for 
(Enumeration e = 
myObs.elements(); 
e.hasMoreElements() ;) { 
((Observer) e).update(this); } } } 

abstract class Observer 
{ public Observer () { 

Customer.attach( this); 
} 
abstract public void 
update(Customer myCust); } 

class POVerification extends Observer 
{ public AddrVerification () { super(); 
} 
public void update 

( Customer myCust) { 

(continued) 
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Example 17-1 Java Code Frament: Observer Implemented (continued) 

If do Address verification stuff here // can get 
more information about customer // in question by 
using myCust } } 

class WelcomeLetter extends Observer 
{ public WelcomeLetter (} { super(); 
} 
public void update (Customer myCust) { 

// do Welcome Letter stuff 
// here can get more 
// information about customer 

// in question by using myCust } } 

To accomplish this, I would simply add a new observer that sends 
the coupon. It only does this for new customers living within the 
specified distance. I could name this observer BrickAndMortar 
and make it an observer to the Customer class. Figure 17-3 shows 
this solution. 

 
Figure 17-3   Adding the BrickAndMortar observer. 
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The Observer in 

the real world 

Sometimes, a class that will become an Observer may already 
exist. In this case, I may not want to modify it. If so, I can easily 
adapt it with the Adapter pattern. Figure 17-4 shows an example of 
this. 

  

 

Figure 17-4   Implementing Observer with Adapters. 

. 

The Observable Class: A Note to Java developers. 

The Observer pattern is so useful that Java contains an implemen-
tation of it in its packages. The Observable class and the 
Observer interface make up the pattern. The Observable class 
plays the role of the Subject in the Gang of Four's description of 
the pattern. Instead of the methods attach, detach, and notify, Java 
uses addObserver, deleteObserver, and notifyObservers, 
respectively (Java also uses update). Java also gives you a few 
more methods to make life easier.* 

See http://java.sun.com/j2se/l3tdocs/api/index.html for information on the Java 
API for Observer and Observable. 
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Intent  

Problem 

Solution 

Participants and 
Collaborators  

Consequences  

Implementation 

GoF Reference 

The Observer Pattern: Key Features 

Define a one-to-many dependency between objects so that when one 
object changes state, all its dependents are notified and updated automati-
cally. 

You need to notify a varying list of objects that an event has occurred.  

Observers delegate the responsibility for monitoring for an event to a cen-
tral object: the Subject. 

The Subject knows its Observers because the Observers register 
with it. The Subject must notify the Observers when the event in question 
occurs. The Observers are responsible both for registering with the 
Subject and for getting the information from the Subject when notified. 

Subjects may tell Observers about events they do not need to know if 
some Observers are interested in only a subset of events (see "Field 
Notes: Using the Observer Pattern" on page 274). Extra communication 
may be required if Subjects notify Observers which then go back and 
request additional information. 

• Have objects (Observers) that want to know when an event happens 
attach themselves to another object (Sub j ect) that is watching for the 
event to occur or that triggers the event itself. 

• When the event occurs, the Subject tells the Observers that it has 
occurred. 

• The Adapter pattern is sometimes needed to be able to implement the 
Observer interface for all of the Observer-type objects. 

Pages 293-303. 

 
Figure 17-5   Standard, simplified view of the Observer pattern. 
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Not for all 
dependencies 

Field Notes: Using the Observer Pattern 

The Observer pattern is not meant to be used every time there is a 
dependency between objects. For example, in a ticket processing 
system a tax object handles taxes, it is clear that when items are 
added to the ticket the tax object must be notified so the tax can be 
recalculated. This is not a good place for an Observer pattern since 
this notification is known up front and others are not likely to be 
added. When the dependencies are fixed (or virtually so), adding an 
Observer pattern probably just adds complexity. 

  

.. . but for changing 

or dynamic depen-

dencies 

If the list of objects that need to be notified of an event changes, or is 
somehow conditional, then the Observer pattern has greater value. 
These changes can occur either because the requirements are 
changing or because the list of objects that need to be notified are 
changing. The Observer pattern can also be useful if the system is 
run under different conditions or by different customers, each having 
a different list of required observers. 

  

Whether to process 
an event 

An observer may only need to handle certain cases of an event. The 
Brick and Mortar case was an example. In such situations, the 
observer must filter out extra notifications. 

  

How to process an 
event 

Extraneous notifications can be eliminated by shifting the responsi-
bility for filtering out these notifications to the Subject. The best 
way to do this is for the Subject to use a Strategy pattern to test if 
notification should occur. Each observer gives the Subject the cor-
rect strategy to use when it registers. 

Sometimes, Subjects will call the observers' update method, pass-
ing along information. This can save the need for callbacks from the 
observers to the Subject. However, it is often the case that different 
observers have different information requirements. In this case, a 
Strategy pattern can again be used. This time, the Strategy 
object is used for calling the observers' update procedure. Again, 
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the  observers  must supply the  Subject with the appropriate 
Strategy object to use. 

Summary  

In learning the Observer pattern, I looked at which object is best 
able to handle future variation. In the case of the Observer pattern, 
the object that is triggering the event— the Subject— cannot antici-
pate every object that might need to know about the event. To solve 
this, I create an Observer interface and require that all Observers be 
responsible for registering themselves with this Subject. 

In this chapter 

  

While I focused on the Observer pattern during the chapter, it is 
worth pointing out several object-oriented principles that are used 
in the Observer pattern. 

Summary of 

object-oriented 

principles used 

  

Concept Discussion 
  

Objects are There were different kinds of Observers but all gath- 
responsible for       ered the information they needed from the Subj ect 
themselves and took the action appropriate for them on their own.  

Abstract class        The Observer class represents the concept of 
objects that needed to be notified. It gave a common 
interface for the subject to notify the Observers. 

Polymorphic The subject did not know what kind of observer it was  
encapsulation         communicating with. Essentially, the Observer class 

encapsulated the particular Observers present. This 
means that if I get new Observers in the future, the 
Subject does not need to change. 
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Supplement: C++ Code Example 

Example 17-2   C++ Code Fragment 

class Customer { 

public: 
static void attach(Observer *o); 
static void detach(Observer *o); 
String getStateO; 
private: 
Vector myObs; 
void notifyObs(); 

} 

Customer::attach(Observer *o){ 
myObs.addElement(o); } 

Customer::detach(Observer *o){ 
myObs.remove(o); 

} 
Customer::getState () { 

// have other methods that will // 
give the required information 

} 

Customer::notifyObs () { for 
(Enumeration e = 
myObs.elements(); 
e.hasMoreElements() ;) 
{ ((Observer *) e)-> 

update(this); } 

  } 

>  

class Observer { public: Observer(); 
void update(Customer *mycust)=0; 

// makes this abstract }  

(continued) 
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Example 17-2   C++ Code Fragment (continued) 

Observer::Observer   ()    { 
Cus tomer.attach(   this);  

} 
class AddrVerification : public Observer 
{ public: 
AddrVerification() ; 
void update( Customer *myCust); } 

AddrVerification::AddrVerification () { 
} 
AddrVerification::update 

(Customer *myCust) { 
// do Address verification stuff here 
// can get more information about 
// customer in question by using myCust 

} 

class WelcomeLetter : public Observer { public: 
WelcomeLetter(}; 
void update( Customer *myCust); } 

WelcomeLetter::update( Customer *myCust) { 
// do Welcome Letter stuff here can get more // 
information about customer in question by // 
using myCust 

} 



CHAPTER 18 

The Template Method 
Pattern 

Overview  

This chapter continues the e-tailing case study discussed thus far in 
Chapters 14-17. 

In this chapter, 

• I introduce the Template Method pattern by discussing addi 
tional requirements for the case study. 

• I present the intent of the Template Method pattern. 

• I describe the key features of the Template Method pattern. 

• I describe some of my experiences using the Template Method 
pattern in practice. 

More Requirements for the Case Study 

In the process of writing the application, suppose I get a new 
requirement to support both Oracle and SQL Server databases. Both 
of these systems are based on SQL (Structured Query Language), the 
common standard that makes it easier to use databases. Yet, even 
though this is a common standard at the general level, there are still 
differences in the details. I know that in general, when executing 
queries on these databases, I will use the following steps: 

1. Format the CONNECT command. 

2. Send the database the CONNECT command. 

3. Format the SELECT command. 

In this chapter 

New requirement: 

access multiple SQL 

database systems 

279 



28O       Part V   •    Handling Variations with Design Patterns 

4. Send the database the SELECT command. 

5. Return the selected dataset. 

... but the details 

differ 

The specific implementations of the databases differ,  however, 
requiring slightly different formatting procedures. 

  

Standardizing on the 

steps 

The Template Method Pattern 

The Template Method is a pattern intended to help one abstract out a 
common process from different procedures. According to the 
Gang of Four, the intent of the Template method is to 

Define the skeleton of an algorithm in an operation, 
deferring some steps to subclasses. Redefine the steps in 
an algorithm without changing the algorithm's structure.1 

In other words, although there are different methods for connecting 
and querying Oracle databases and SQL Server databases, they share 
the same conceptual process. The Templa te Method gives us a way to 
capture this common ground in an abstract class while 
encapsulating the differences in derived classes. The Template 
Method pattern is about controlling a sequence common to different 
processes. 

  

The details are 

varying 

Applying the Template Method 
to the Case Study 

In this case study, the variations in database access occur in the par-
ticular implementations of the steps involved. Figure 18-1 illus-
trates this. 

  

1.    Gamma, E., Helm, R., Johnson, R., Vlissides, J., Design Patterns: Elements of 
Reusable Object-Oriented Software, Reading, Mass.: Addison-Wesley, 1995, p. 325. 
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Figure 18-1    Using the Template Method pattern to perform a query. 

I have created a method called doQuery that handles the query I 
need to perform. I pass in the name of the database and the query 
specification. The doQuery method follows the five general steps 
above, providing virtual methods for the steps (such as 
format-Connect and formatSelect) that must be implemented 
differently.  

The doQuery method is implemented as follows. As shown in Figure 
18-1, it first needs to format the CONNECT command required to 
connect to the database. Although the abstract class (QueryTem-plate) 
knows this format needs to take place, it doesn't know how to do 
this. The exact formatting code is supplied by the derived classes. 
This is true for formatting the SELECT command as well. 

The Template Method manages to do this because the method call is 
made via a reference pointing to one of the derived classes. That is, 
although Query-Control has a reference of type Query-Template, it 
is actually referring to an OracleQT or an SQLSvrQT object. Thus, 
when the doQuery method is called on either of these objects, the 
methods resolved will first look for methods of the appropriate 
derived class. Let's say our QueryControl is referring to an 
OracleQT object. Since OracleQT does not override 
Query-Template, the QueryTemplate's doQuery method is 
invoked. This 

How this works: 

virtual methods for 

the steps that vary 
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starts executing until it calls the format Connect method. Since the 
OracleQT object was requested to perform doQuery, the 
OracleOT's format Connect method is called. After this, control is 
returned to the Query-Template's doQuery method. The code com-
mon to all queries is now executed until the next variation is 
needed— the formatSelect method. Again, this method is located 
in the object that Query-Control is referring to (OracleQT in this 
example). 

When a new database is encountered, the Template Method pro-
vides us with a boilerplate (or template) to fill out. We create a new 
derived class and implement the specific steps required for the new 
database in it. 

The Template 
Method is not 

coupled Strategies 

Field Notes: Using the 
Template Method Pattern 

Sometimes a class will use several different Strategy patterns. 
When I first looked at the class diagram for the Template Method, I 
thought, "Oh, the Template Method is simply a collection of Strate-
gies that work together." This is dangerous (and usually incorrect) 
thinking. While it is not uncommon for several Strategies to 
appear to be connected to each other, designing for this can lead to 
inflexibility. 

The Template Method is applicable when there are different, but 
conceptually similar processes. The variations for each process are 
coupled together because they are associated with a particular pro-
cess. In the example I presented, when I need a format a CONNECT 
command for an Oracle database, if I need a format a QUERY com-
mand, it'll be for an Oracle database as well. 



Chapter 18    •   The Template Method Pattern       283 

  

Intent  

Problem 

Solution 

Participants and 
Collaborators  

Consequences  

Implementation 

GoF Reference 

The Template Method Pattern: Key Features 

Define the skeleton of an algorithm in an operation, deferring some steps 
to subclasses. Redefine the steps in an algorithm without changing the 
algorithm's structure.  

There is a procedure or set of steps to follow that is consistent at one 
level of detail, but individual steps may have different implementations at 
a lower level of detail. 

Allows for definition of substeps that vary while maintaining a consistent 
basic process. 

The Template Method consists of an abstract class that defines the basic 
TemplateMethod (see figure below) classes that need to be overrid-
den. Each concrete class derived from the abstract class implements a 
new method for the Template.  

Templates provide a good platform for code reuse. They also are helpful 
in ensuring the required steps are implemented. They bind the overrid-
den steps together for each Concrete class, and so should only be 
used when these variations always and only occur together.  

Create an abstract class that implements a procedure using abstract 
methods. These abstract methods must be implemented in subclasses to 
perform each step of the procedure. If the steps vary independently, each 
step may be implemented with a Strategy pattern.  

Pages 325-330. 

 
Figure 18-2   Standard, simplified view of the Template Method pattern. 
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Summary 

In this chapter Sometimes, I have a set of procedures that I must follow. The proce- 
dures are common at a high level, but implementing some of the 
steps can vary. For example, querying a SQL database is fairly rou-
tine at a high level, but some of the details— say, how to connect to 
the database— can vary based on details such as the platform. 

The Template Method allows me to define the sequence of steps 
and then override those steps that need to change. 



CHAPTER 19 

The Factory Method Pattern 

Overview 

This chapter continues the e-tailing case study discussed thus far in    In this chapter 
Chapters 14-18. 

In this chapter, 

• I introduce the Factory Method pattern by discussing additional 
requirements for the case study. 

• I present the intent of the Factory Method pattern. 

• I describe the key features of the Factory Method pattern. 

• I describe some of my experiences using the Factory Method 
pattern in practice. 

More Requirements for the Case Study 

In Chapter 18, "The Template Method Pattern," I ignored the issue 
of how to instantiate the database object required by my current 
context. I may not want to make the Client responsible for instan-
tiating the database object. Instead, I might want to give that 
responsibility to the QueryTemplate class itself. 

In Chapter 18, each derivation of the QueryTemplate was special-
ized for a particular database. Thus, 1 might want to make each der-
ivation responsible for instantiating the database to which it 
corresponds. This would be true whether the QueryTemplate (and 
its derivations) was the only class using the database or not. Figure 
19-1 shows this solution. 

New requirement: 

responsibility for 

instantiating 

database objects 
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Figure 19-1   The Template Method ( d o Q u e r y )  using the Factory 
Method pattern ( m a k e D B ) . 

Template Method 

using Factory 

Method 

In Figure 19-1, the doQuery method in the Template Method is 
using makeDB to instantiate the appropriate database object. 
Query-Template does not know which database object to instantiate; 
it only knows that one must be instantiated and provides an interface 
for its instantiation. The derived classes from Query-Template will 
be responsible for knowing which ones to instantiate. Therefore, at 
this level, I can defer the decisions on how to instantiate the database 
to a method in the derived class. 

Since there is a method involved in making an object, this approach is 
called a Factory Method. 

Public or protected methods? 

Note that the makeDB methods are protected (as indicated by the # 
signs). In this case, only the QueryTemplate class and its deri-
vations can access these methods. If I want objects other than 
QueryTemplate to be able to access these methods, then they 
should be public. This is another, quite common, way to use the 
Factory Method. In this case I still have a derived class making 
the decision as to which object to instantiate. 
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The Factory Method Pattern 

The Factory Method is a pattern intended to help assign responsibil-
ity for creation. According to the Gang of Four, the intent of the 
Factory Method is to 

Define an interface for creating an object, but let sub-
classes decide which class to instantiate. Factory Method 
lets a class defer instantiation to subclasses.1 

Standardizing on the 

steps 

Field Notes: Using the 
Factory Method Pattern 

In the classic implementation of the Abstract Factory, I had an Abstract Factory can 
abstract class define the methods to create a family of objects. I be implementeed as a 

derived a class for each different family I could have. Each of the  family of Factory 

methods defined in the abstract class and then overridden in the  Methods 
derived classes were following the Factory Method pattern. 

Sometimes it is useful to create a hierarchical class structure that is 
parallel to an existing class structure, with the new hierarchy con-
taining some delegated responsibilities. In this case, it is important 
for each object in the original hierarchy to be able to instantiate the 
proper object in the parallel hierarchy. A Factory Method can be 
used for this purpose. 

The Factory Method pattern is commonly used when defining 
frameworks. This is because frameworks exist at an abstract level. 
Usually, they do not know and should not be concerned about 
instantiating specific objects. They need to defer the decisions about 
specific  objects to the users of the framework. 

Useful to bind 

parallel class 
hierarchies 

Factory Method is 

used in frameworks 

  

1.   Gamma, E., Helm, R., Johnson, R., Vlissides, J., Design Patterns: Elements of Reusable 
Object-Oriented Software, Reading, Mass.: Addison-Wesley, 1995, p. 325. 
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The Factory Method Pattern: Key Features 

Intent Define an interface for creating an object, but let subclasses decide 
which class to instantiate. Defer instantiation to subclasses. 

Problem A class needs to instantiate a derivation of another class, but doesn't 
know which one. Factory Method allows a derived class to make this 
decision.  

Solution A derived class makes the decision on which class to instantiate and 
how to instantiate it. 

Participants and Product is the interface for the type of object that the Factory Method 
Collaborators creates. Creator is the interface that defines the Factory Method.  

Consequences Clients will need to subclass the Creator class to make a particu- 
lar ConcreteProduct.  

Implementation Use a method in the abstract class that is abstract (pure virtual in 
C++). The abstract class' code refers to this method when it needs to 
instantiate a contained object but does not know which particular 
object it needs. 

GoF Reference Pages 107-116. 

 
Figure 19 -2   Standard, simplified view of the Factory Method pattern. 



Chapter 19    •    The Factory Method Pattern        289  

Summary 

The Factory Method pattern is one of the straightforward patterns In this chapter 
that you will use again and again. It is used in those cases where you want to defer 
the rules about instantiating an object to some derived class. In such cases, it is most 
natural to put the implementation of the method in the object that is responsible 
for that behavior. 



CHAPTER 2O 

 

  

The Analysis Matrix 

Overview 

This chapter concludes the e-tailing case study discussed thus far in 
Chapters 14-19. 

Now that I have discussed an entire set of individual patterns, it is 
time to step back to look at one of the biggest problems in software 
development: handling variation within the problem domain. 
Design patterns can help analysts identify and organize variations 
successfully. 

In this chapter, 

• I consider the problem of variation in the real world. 

• I look at a portion of the e-tailing case study that represents sig 
nificant problems of variation. In the process of solving this 
problem, I develop the Analysis Matrix, a simple variant on 
decision tables that I have found helpful to understand and 
coordinate variation in concepts. There is a parallel between 
this  and  the  concepts  of  Christopher  Alexander  and  Jim 
Coplien. 

• I describe my use of the Analysis Matrix in the real world. 

In this chapter 

  

In the Real World: Variations 

In the real world, problems are not tidy or well behaved. Except in 
the most trivial problems, there always seem to be exceptions and 
variations that are not well organized. They are the "gotchas" that 
rise up to wreck our finely crafted models. 

More variation in 

the real world 
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For example, patients coming to a hospital typically go to the 
admitting office first. But when there is a life-threatening situation, 
the patient goes directly to the emergency room before having to go 
to admitting. These are the variations in the real world, the different 
special cases that our system has to deal with. 

And this is what creates headaches for us analysts. Can patterns 
help us deal with variation more efficiently? 

I have used an approach to make explicit the variations in the sys tem 
and then use the analysis to identify the patterns I ought to use in my 
design. The steps in my approach are as follows: 

1. Identify the most important features in one case and organize 
them in a matrix. Label each feature with the concept that the 
feature represents. 

2. Proceed through the other cases, expanding the matrix as nec 
essary. Handle each case independently of the others. 

3. Expand the Analysis Matrix with new concepts. 

4. Use the rows to identify rules. 

5. Use the columns to identify specific cases. 

6. Identify design patterns from this analysis. 

7. Develop a high-level design. 

E-tail: A case study 
in variation 

Case Study in Variation: An International 
E-Tail System 

Suppose an e-tail system must process sales orders in several differ-
ent nations. Initially I have to handle just the United States and 
Canada. I look at my requirements and see several things that vary. I 
note these in Table 20-1. 
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Table 2O-1     Different Cases Depending Upon Residence of Customer 
  

Case Procedure   

U.S.A 

Canada 

Calculate freight based on UPS charges. Use 

U.S. postal rules for verifying addresses. 

Calculate tax based on sales and/or services depending 
upon locale. 

Handle money in U.S. $.  

Calculate freight based on main Canadian shipper.  

Use Canadian postal rules for verifying addresses. 

Calculate tax based on sales and/or services depending 
upon Canadian province taxing rules (using GST and 
PST). 

Handle money in Canadian $.  

  

The variations presented in this problem are not too complicated. 
Just by looking, it seems obvious how to deal with them. A simple 
problem, yes. But it illustrates a technique for dealing with varia tion 
that I have used many times. It is a simple technique but it seems to 
scale well for many real-world problems. I call this the Analysis 
Matrix. 

At this stage, the objective is to find the concepts that are varying, to 
find points of commonality, and to uncover missing requirements. 
The concepts come from the specific requirements of each case. 
Design and implementation issues are handled in later stages. 

Let's begin by looking at one case. 

I look at each function that I must implement and label the concept it 
represents. Each function point will be put on its own line. I will put 
the concept it represents at the far left. 

. . . to illustrate the 

Analysis Matrix 

technique 

1. Identify the most 

important features 

in one case and 

organize them in a 
matrix 

I will show this process step by step, starting with Table 20-2. 
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Table 20-2     Filling Out the Analysis Matrix: First Concept 
 

 U.S. Sales   

Calculate freight   Use UPS rates   

Now, I continue with the next piece of information, "use U.S. postal 
rules for verifying addresses," by adding another row to hold that 
piece of information, as shown in Table 20-3. 

Table 20-3     Filling Out the Analysis Matrix: Second Concept 
 

 U.S. Sales   

Calculate freight   Use UPS rates   

Verify address  Use U.S. postal rules   

I continue through all of the concepts in the first case, as shown in 
Table 20-4. 

Table 20-4    Filling Out the Analysis Matrix: 
Complete First Case— U.S. Sales 

 

 U.S. Sales   

Calculate freight   Use UPS rates   

Verify address  Use U.S. postal rules   

Calculate tax   Use state and local taxes   

Money  U.S. $  

2. Proceed through 
the other cases, 

expanding the 

matrix as necessary 

Now, I move to the next case and the other cases, one column per 
case, completing each cell with as much information as I have. The 
completed matrix for the next case is in Table 20-5. 
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Table 2O-5    The Analysis Matrix for the Next Case— Canadian Sales 
 

 U.S. Sales   Canadian Sales   

Calculate freight   Use UPS rates   Use Canadian shipper  

Verify address  Use U.S. postal rules   Use Canadian postal rules   

Calculate tax   Use state and local taxes   Use GST and PST  

Money  U.S. $  Canadian $  

As I build the matrix, I discover gaps in the requirements. I will use 
this information to expand my analysis. These inconsistencies give 
clues about incomplete information from the customer. That is, in 
one case a customer might mention some specific requirement 
while another customer did not. For example, in getting require-
ments for the United States, no maximum weight may have been 
mentioned, while 31.5 kilograms might have been stated for Canada. 
By comparing the requirements I can fill in the holes by going back 
to my American contact and asking her specifically about weight 
limits (which, in fact, may not exist). 

and look for 

incompleteness 
or inconsistencies 

as you go 

  

As time goes on we get new cases to handle (for example, we may 
expand into Germany). When you discover a new concept for one 
of the cases, add a new row even if it does not apply to any of the 
other cases. I illustrate this in Table 20-6. 

3. Expand the 

Analysis Matrix 
with new concepts 

Table 2O-6    Expanding the Analysis Matrix 
 

 U.S. Sales   Canadian Sales  German Sales  

Calculate freight  Use UPS rates  Use Canadian shipper  Use German shipper  

Verify address  Use U.S. postal rules  Use Canadian postal rules   Use German postal rules  

Calculate tax   Use state and local taxes   Use GST and PST  Use German VAT  

Money  U.S. $  Canadian $  German DM  

Dates  mm/dd/yyyy  mm/dd/yyyy  dd/mm/yyyy  
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A note about customers. 

My experience with customers has taught me several things: 

• They usually know their problem domain very well (most 
know it better than I ever will). 

• In general, they do not express things on the conceptual 
level, as developers often do. Instead, they talk in specific  
cases. 

• They often use the term always when they mean usually. 

• They often use the term never when they mean seldom. 

• They often say they have told me about all of the cases when 
in fact they have only told me what usually happens. 

The bottom line is that I trust customers to tell me what happens 
when I ask specific questions but I do not trust their generalized 
answers. I try to interact with them at a very concrete level. Even 
those customers who sound like they think in a conceptual way 
often do not, but are trying to "help me out." 

4. Use the rows to 
identify rules 

Now that the concepts are revealed, what should I do with what I 
know? How do I begin to move toward implementation? 

Look at the matrix in Table 20-6. The first row is labeled "Calculate 
freight," and includes "Use UPS rates," "Use Canadian shipper," 
and "Use German shipper." This row represents both 

• A general rule to implement "Calculate freight rate" 

• The specific set of rules that I must implement— that is, each 
shipper I may use in the different countries 

In fact, each row represents specific ways of implementing a gener-
alized concept. Two of the rows (money and dates) may be handled at 
the object level. For example, money can be handled with objects 
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containing a currency object. Many computer languages support 
different date formats for different nationalities in their libraries. 
Table 20-7 shows the conceptual way of handling each row. 

Table 2O-7     Concrete I m p l e m e n t a t i o n  Rules: Rows 

 

  

What do the columns represent? They are the specific implementa-
tions we will use for the case the column represents. This is illus-
trated in Table 20-8. 

5. Use the columns 

to identify imple-
mentation  

Table 2O-8     Concrete Imp lemen ta t i on  Rules: Columns 
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6. Identify design 

patterns from this 

analysis: look at 
rows 

For example, the first column shows the concrete implementations 
to use to process a sales order in the United States. 

How should I translate these insights into patterns? Look at Table 
20-7 again. Each row represents the specific way to implement the 
concept stated in the leftmost column. For example, 

• In the "Calculate freight" row, the "Use UPS rates," "Use Cana 
dian shipper," entries really mean, "How should I calculate the 
freight?" The algorithm I am encapsulating is "freight rate cal 
culation." My concrete rules will be "UPS rates," "Canadian 
rates," and "German rates." 

• The next two rows are also organizations of different rules and 
their associated concrete implementations. 

• The last two rows represent classes that may be consistent 
throughout the application, but which will behave differently 
depending upon the country involved. 

r  O       X "  I 

Therefore, each of the first three rows can be thought of as a Strategy 
pattern. This is illustrated in Table 20-9. The objects in the first row 
can be implemented as a strategy pattern encapsulating the 
"Calculate freight" rule. 

Table 2O-9     I m p l e m e n t i n g  w i t h  the Strategy Pattern 
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In a similar vein, I can look at the columns. Each column describes 7. Identify design 

which rules to use for each case. These entries represent the family patterns from this  

of objects needed for that case. This sounds like the Abstract Factory analysis: look at col- 
pattern. This is shown in Table 20-10. umns 

Table 2O-1O    Implementing with the Abstract Factory Pattern  

 

Armed with the information that some of the rows represent a    8. Develop a Strategy 
pattern and each column represents a family in an Abstract    high-level design Factory 
pattern, I can develop a high-level application design as shown in Figure 20-1. 

Field Notes 

In practice, almost any kind of pattern that involves polymorphism 
could be present in the Analysis Matrix. Of the patterns I've pre-
sented, this would include Bridge, Decorator, Template, and 
Observer. Other patterns I have used in an Analysis Matrix are 
Composite, Proxy, Chain of Responsibility, Command, Iterator, 
Mediator, and Visitor. 

Other patterns 
present 

 



 
Figure 2O-1   Using Strategy patterns with an Abstract Factory. 
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For example, if in our e-tail system I included requirements on 
printing sales tickets and found the following variations: 

• U.S. sales tickets need headers 

• Canadian sales tickets need headers and footers 

• German sales tickets need two different footers 

I would include this information in its own row, each entry relating 
to the format of sales tickets. I would implement this row's require-
ments with a Decorator pattern.  

Although the Analysis Matrix rarely captures all aspects of a partic -
ular problem domain, I have found it useful for at least part of most 
problem domains. I find it most useful when I am given so many 
special cases that I can't get my head around the big picture. 

It is usually worse than this. Rarely are different cases of require-
ments stated to analysts or developers in any coordinated fashion. 
This does not significantly complicate the Analysis Matrix process, 
however. In these situations, I take a feature and look in the left-
most column and see what concept it is a variant of. If I find the 
concept, I put the feature in that row. Not being able to find such a 
concept indicates I must create a new row. 

In extreme situations, the Analysis Matrix may be the only way to 
get a handle on things. I once had a client that literally had dozens of 
special cases. Each case was a separately developed document 
control system. The problem was to integrate all of these document 
control systems together. So many special cases were present (there 
were also dozens of rows) that it was impossible to think about the 
entire problem all at once. The analysts did not have a good concep-
tual grasp of what was involved. They just talked about general 
rules and exception cases. By considering each case individually, I 
was able to abstract out the common data and behavior (which 

Applicability of the 

Analysis Matrix 

More useful as 

problems get bigger 
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showed up in the leftmost columns) and then implement them with 
design patterns. 

Summary 

In this chapter Variation in concepts can be one of the greatest challenges that an 

analyst can face. In this chapter, I presented a simple analysis tool 
that I have found helpful in making sense of such variation. I call 
this tool the Analysis Matrix, and it is based on the concepts of 
Christopher Alexander and Jim Coplien. I applied this tool to a 
sample problem to show how it might reveal the types of patterns 
that are inherent in the problem. While this tool is very useful in 
containing variation and helping me think about my problem 
domain, I do not pretend it captures all aspects of a design. 



PART V1 

Endings and Beginnings 

Part Overview 

In this part I continue with our new perspective on object-oriented 
design. In particular, I describe how design patterns use this per-
spective in their design and implementation. I close this section 
with recommendations for further reading.  

In this part 

  

Chapter      Discusses These Topics 

21 Looks at the motivations and relationships of design patterns 
within the context of this new perspective on object-oriented 
design 

22 Suggests books and other resources for future study 
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CHAPTER 21 

Design Patterns Reviewed 

from the New Perspective of 

Object-Oriented Design 

Overview 

At the end of any book, it is always nice to step back and see what we 
have gained. In this book, I have tried to give you a better and 
perhaps new understanding of object-oriented principles by teach-
ing you design patterns and understanding how design patterns 
explain the object-oriented paradigm. 

In this chapter, I review the following: 

• The new perspective of object-oriented principles, based on an 
understanding of design patterns 

• How design patterns help us encapsulate implementations 

• Commonality/Variability analysis and design patterns and how 
they help to understand abstract classes 

• Decomposing a problem domain by the responsibilities involved 

• Specifying relationships between objects 

• Design patterns and contextual design 

Finally, I offer some field notes from my own practice. 

In this chapter 

  

A Summary of Object-Oriented Principles 

In the course of the discussion on design patterns, I have stated a 
number of the principles of the object-oriented paradigm. These 
principles can be summarized as follows: 

Objects from the new 
perspective 
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• Objects are things with well-defined responsibilities. 

• Objects are responsible for themselves. 

• Encapsulation means any kind of hiding 
 

- Data-hiding 

- Class hiding (behind an abstract class or interface) 

- Implementation hiding 
 

• Abstract out variations in behavior and data with commonality/ 
variability analysis. 

• Design to interfaces. 

• Think of inheritance as a method of conceptualizing variation, 
not for making special cases of existing objects. 

• Keep variations in a class decoupled from other variations in 
the class. 

• Strive for loose coupling. 

• Strive for high cohesion. 

• Be absolutely meticulous in applying the once and only once 
rule. 

Hiding variations in 

detail 

How Design Patterns Encapsulate 
Implementations 

Several of the design patterns I have presented have the character-
istic that they shield implementation details from a Client object. 
For example, the Bridge pattern hides from the Client how the 
classes derived from the Abstraction are implemented. Addition-
ally, the Implementation interface hides the family of implemen-
tations from the Abstraction and its derivations as well. In the 
Strategy pattern, the implementations of each ConcreteStrategy 
are hidden. This is true of most of the patterns described by the 
Gang of Four: they give ways to hide specific implementations. 
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The value of hiding the implementations is that the patterns allow 
for easily adding new implementations, since the client objects do 
not know how the current implementation works. 

Commonality/Variability Analysis and 
Design Patterns 

In Chapter 9, "The Bridge Pattern," I showed how the Bridge pattern 
can be derived using commonality/variability analysis. Many other 
patterns can be derived as well, including the Strategy, Iterator, 
Proxy, State, Visitor, Template Method, and Abstract Factory. What 
is more important, however, is how many patterns are imple mented 
by using commonality/variability analysis. Looking for 
commonalities can help us discover that a pattern is present in our 
problem domain. 

For example, in the Bridge pattern, I may start with several special 
cases: 

• Draw a square with drawing program one. 

• Draw a circle with drawing program two. 

• Draw a rectangle with drawing program one. 

Knowing the Bridge helps me see these as special cases of two com-
monalities: 

Commonality/ 
variability analysis 

• Drawing programs 

• Shapes to draw 

The Strategy pattern is similar in that when I see several different 
rules, I know to look for a commonality amongst the rules so I can 
encapsulate them. 
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But please keep learning patterns. Read the literature. Patterns pro-
vide the backdrop for discussions about lessons learned in analysis 
and design. They give a team of developers a common vocabulary 
for discussing a problem. They enable you to incorporate 
best-practice approaches into your code. 

The next step in 
commonality/ 

variability analysis 

Decomposing a Problem Domain 
into Responsibilities 

Commonality/variability analysis identifies my conceptual view 
(the commonality) and my implementation view (each particular 
variation). If I consider just the commonalities and the objects that 
use them, I can think about the problems in a different way— a 
decomposition of responsibilities. 

In the Bridge pattern, for example, the pattern says to look at my 
problem domain as being composed of two different types of entities 
(abstractions and implementations). I therefore do not need to be 
limited by just doing object-oriented decomposition (that is, decom-
posing my problem domain into objects), I can also try decomposing 
my problem domain into responsibilities, if that is easier for me to 
do. I can then define the objects that I require to implement these 
responsibilities (ending up with object decomposition). 

This is just an extension of the rule I stated earlier that designers 
should not worry about how to instantiate objects until after they 
know all of the objects they need. That rule can be viewed as a 
decomposing the problem domain into two parts: 

• Which objects are needed 

• How these objects are instantiated 

Specific patterns often give us assistance in thinking about how to 
decompose responsibilities. For example, the Decorator pattern 
gives me a way to combine objects flexibly if I decompose my prob- 
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lem domain into the main set of responsibilities I always use (the 
ConcreteComponent) and the variations I optionally have— my 
decorators. Strategies decompose my problem into an object that 
uses rules and the rules themselves. 

Relationships Within a Pattern 

I must admit, in my courses, I have some fun with a certain quote 
from Alexander. After I have been talking about how great patterns 
are for two-thirds of a day, I pick up Alexander's Timeless Way of 
Building, turn to the end, and say 

This book is 549 pages long. On page 545, which, I think 
you will agree, is pretty close to the end, Alexander says, 
"At this final stage, the patterns are no longer impor tant: ... "1 

I pause to say, "I wish he'd have told me this at the beginning and I 
could have saved myself some time!" Then I continue to quote from 
him: "The patterns have taught you to be receptive to what is real. "2 

I finish with, "If you read Alexander's book, you will know what is 
real— the relationships and forces described by the patterns." 

The patterns give us a way to talk about these. However, it is not 
the patterns themselves that are important. This is true for software 
patterns as well. 

Patterns aren 't 
really the important 

thing 

A pattern describes the forces, motivations, and relationships about Software patterns 
a particular problem in a particular context and provides us with an are multidimen- 
approach to addressing these issues. The Bridge pattern, for exam- sional descriptions 
pie, is about the relationship between the derived classes of an 

1. Alexander, C., Ishikawa, S., Silverstein, M., The Timeless Way of Building, New 
York: Oxford University Press, 1979, p. 545. 

2. ibid, p, 545. 
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abstraction and their possible implementations. A Strategy pattern 
is about the relationships between 

• A class that uses one of a set of algorithms (the Context) 

• The members of this set of algorithms (the strategies) 

• The Client, which uses the context and specifies which of the 
algorithms to use 

Patterns are 
micro-cosmic 

examples of 

contextual design  

Patterns and Contextual Design 

In the CAD/CAM problem earlier in this book, I showed how 
design patterns can be used by focusing on their context with each 
other. Design patterns working together can assist in the develop-
ment of an application's architecture. It is also useful to distinguish 
how many of the patterns are microcosmic  examples of design by 
context. 

  

Designing to an 
interface is 

designing within a 

context 

For example, 

• The Bridge pattern tells me to define my Implementations 
within the context of the derivations of my Abstraction. 

• The Decorator pattern has me design my Decorators within 
the context of my original component. 

• The Abstract Factory has me define my families within the con 
text of my overall problem so I can see which particular objects 
need to be implemented. 

In fact, designing to interfaces and polymorphism in general is a 
kind of design by context. Look at Figure 21-1, which is a reprint of 
Figure 8-4. Notice how the abstract class' interface defines the con-
text within which all of its derived classes must be implemented. 
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Figure 21-1   The relationships between commonality/variability 

analysis, perspectives, and abstract classes. 

Field Notes 

As you learn patterns, it is useful to look for the following forces 
and concepts: 

• What implementations does this pattern hide? Thereby allow 
ing me to change them. 

• What commonalities are present in this pattern? This helps me 
identify them. 

• What are the responsibilities of the objects in this pattern? As it 
may be easier to do my decomposition by responsibility. 

• What are the relationships between these objects? This will give 
me information about the forces present with these objects. 

• How may the pattern itself be a microcosmic example of design 
ing by context? This affords me a better understanding of why 
the pattern is good design. 

Approaches to take 

  

Summary 

In this chapter I summarized our new perspective on object-oriented 
design. I described how design patterns manifest this. I suggested 
that it is useful to look at patterns by seeing 

In this chapter 
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• What they encapsulate 

• How they use commonality/variability analysis 

• How they decompose a problem domain into responsibilities 

• How they specify relationships between objects 

• How they illustrate contextual design 



CHAPTER 22 

Bibliography 

This book has been an introduction. An introduction to design pat-    In this chapter 
terns, object orientation, and to a more powerful way to design computer systems. 
Hopefully, it has given you some tools to get started in this rich and rewarding way 
of thinking. 

Where should you turn next in your study? I conclude this book with 
an annotated list of my current recommendations. 

In this chapter, 

• I give the address of the Web site companion for this book. 

• I offer my recommendations for 
 

- Further reading in design patterns. 

- Java developers. 

- C++ developers. 

- COBOL programmers who want to learn object orientation. 

- Learning the powerful development methodology called XP 
(extreme Programming). 

• I conclude with a list of the books that have been influential to 
me personally, in the belief that life is more than programming, 
and that more rounded individuals make better programmers. 

Design Patterns Explained: The Web Site 
Companion  

The Web site for this book is located at 
http://www.netobjectives.com/dpexplained 

The Web site 
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314       Part V1    •    Endings and Beginnings 

Electronic magazine 

At this site you will find additional information on design patterns, 
including 

• Code examples, frequently asked questions, discussions orga  

nized by chapters of this book 

• Discussions on issues in refactoring 

• A summary of design patterns in a nice reference format 

• A description of the courses we offer on design patterns and 

other design-related topics 

You will also find a form that you can use to send us your com-
ments and questions about this book. 

We also publish an e-zine on design patterns and general object-ori-
ented design. To subscribe, send an e-mail with your name, com-
pany name, and address to info@netobjectives.com with the word 
"subscribe" in the subject line. 

  

Object-oriented 
programming and 
the UML 

Recommended Reading on Design 
Patterns and Object Orientation 

I recommend the following books and references on object-oriented 
programming and the UML: 

• Fowler,  M., Refactoring: Improving the Design of Existing Code, 
Reading, Mass.: Addison-Wesley, 2000. The most extensive treat 
ment of refactoring available. 

• Fowler, M., Scott, K., UML Distilled Second Edition: A Brief Guide to 
the Standard Object Modeling Language, Reading, Ma ss.: Addison- 
Wesley, 2000. This is by far my favorite source for learning the UML. 
It is both approachable to begin with and useful as a reference. I find 
myself referring to it again and again. 
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• Meyer, B.,  Object-Oriented Software Construction, Upper Saddle  
River, N.J.: Prentice Hall, 1997. An incredibly thorough book by one 
of the brilliant minds in our industry.  

The field of design patterns continues to evolve and deepen. One can 
study the field on a variety of levels and from many perspectives. I 
recommend the following books and references to help you on your 
journey: 

• Alexander, C., Ishikawa, S., Silverstein, M., The Timeless Way of 
Building, New York: Oxford University Press, 1979. Both a per 
sonal and professional favorite. It is both entertaining and insightful. If  
you read only one book from this list, have it be this one.  

• Alexander, C., Ishikawa, S., Silverstein, M., A Pattern Language: 
Towns/Buildings/Construction, New York: Oxford University Press, 
1977. 

• Alexander, C., Ishikawa, S., Silverstein, M., Notes on Synthesis of 
Form, New York: Oxford University Press, 1970. 

• Coplien,   J.,  Multi-Paradigm Design for C++,  Reading,   Mass.: 
Addison-Wesley, 1998. Chapters 2-5 are a must read even for non- 
C++ developers. This book contains the best description of commonality/ 
variability analysis anywhere. See our book's Web site for an on-line 
version of Jim's doctoral dissertation, which is equivalent to his book. 

• Gamma, E., Helm, R., Johnson, R., Vlissides, J., Design Patterns: 
Elements of Reusable Object-Oriented Software,  Reading,  Mass.: 
Addison-Wesley, 1995. Still the best design patterns book available. 
A must for C++ developers.  

• Gardner, K.,  Cognitive Patterns: Problem-Solving Frameworks for 
Object Technology, New York: Cambridge University Press, 1998. 
This approaches patterns from the perspective of cognitive science and 
artificial intelligence. Dr. Gardner was also heavily influenced by Alex 
ander's work. 

Design patterns 
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Schmidt, D., Stal, M., Rohnert, H., Busehmann, P., Pattern -Ori-
ented Software Architecture, Vol. 2, New York: John Wiley, 2000. 

The book to use for multithreaded and distributed environments. 

Vlissides, J., Pattern Hatching, Reading, Mass.: Addison-Wesley, 

1998. This is a good advanced book on design patterns. Illustrates several 

ways that patterns work together. Both our book and the GoF book 
should be read before reading this one. 

Learning Java 

Implementing design 

patterns in Java 

Recommended Reading for 
Java Programmers  

When it comes to learning Java, my favorite books are: 

• Eckel, B., Thinking in Java, 2nd Edition, Upper Saddle River, N.J.: 
Prentice Hall, 2000. One of the best Java books on the market. See  
http://www.eckelobjects.com/DownloadSites for a downloadable ver 
sion of this book. 

J 

• Horstmann, C., Core Java 2— Volume 1— Fundamentals, Palo Alto: 
Pearson Education, 1999. Another good book for learning Java. 

Each language has its own set of issues when it comes to imple -
menting design patterns. I recommend the following books and ref-
erences when it comes to Java: 

Goad, P., Java Design, Upper Saddle River, N.J.: Prentice Hall, 2000. 

If you are a Java developer, this book is a must read. It discusses most of 

the principles and strategies we have found useful in using design patterns 
even though it doesn 't mention design patterns specifically. 

Grand, M., Patterns in Java, Vol. 1, New York: John Wiley, 1998. If 

you are a Java developer, you may find this book useful. It has its 
examples in Java and it uses the UML. However, the authors believe the 

discussions on forces and motivations in the GoF book are more useful 

than is presented in Grand's book. However, there is a lot of value by 

getting another set of examples, particularly when in the language of 

use (Java). 
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• See http://java.sun.com/j2se/L3/docs/api/index.html for information 
on the Java API for Observer and Observable.  

There are special considerations when it comes to dealing with    Threads in Java 
threads in Java. I recommend the following resources to help learn about this area: 

• Hollub, A., Taming Java Threads, Berkeley: APress, 2000. 

• Hyde, P., Java Thread Programming: The Authoritative Solution, 
Indianapolis: SAMS, 1999. 

• Lea, D., Concurrent Programming in Java: Design Principles and Pat 
terns, Second Edition, Reading, Mass.: Addison-Wesley, 2000. 

Recommended Reading for 
C++ Programmers  

I have found the following essential for using C++ for UNIX: C++ and UNIX 

• Stevens, W. , Advanced Programming in the UNIX Environment, 
Reading, Mass.: Addison -Wesley, 1992. This is a must resource for 
anyone doing C++ development on UNIX. 

Recommended Reading for 
COBOL Programmers  

I have found the following helpful for COBOL programmers who    Learning 00 
want to learn object-oriented design: 

• Levey, R., Reengineering Cobol with Objects, New York: McGraw-Hill, 
1995. A useful book for COBOL programmers who are trying to learn 
object-oriented design. 
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Learning XP 

Recommended Reading on extreme 
Programming  

When it comes to gaining proficiency in extreme Programming 
(XP), my two best recommendations are 

• http://www.netobjectives.com/xp— Our   own   Web   site   on   XP,  
including articles and courses on XP. 

• Beck, K., Extreme Programming Explained: Embrace Change, Read 
ing, Mass.: Addison-Wesley, 2000. This is worthwhile reading for 
anyone involved in software development, even if you are not planning 
on using XP. I have selected 30 or so pages I consider essential reading 
and list them on our XP site. 

Net Objectives' We are in the process of defining our own software development 
process  process which we call Pattern-Accellerated Software Engineering. 

This is an integration of several methodologies, analysis techniques 

and design techniques. See http://www.netobjectives.com/pase for more 

information. 

Recommended Reading on 
General Programming  

Being a better This book mirrors my philosophy of being introspective and always 

programmer looking to see how I can improve myself and my work: 

• Hunt, A., Thomas, D., The Pragmatic Programmer: From Journey man 
to Master, Reading, Mass.: Addison-Wesley, 2000. This is one of 
those lovely books that I read a few pages of each day. When I come across 
things I already do, I take the opportunity to acknowledge myself. When I 
find things I'm not doing, 1 take the opportunity to learn. 
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Personal Favorites 

It is my belief that the best designers are not those who live and 
breathe programming and nothing else. Rather, being able to think 
and to listen, having a more complete and deep personality, and 
knowing ideas are what make for great designers. You can connect 
better with other people. You can glean ideas from other disciplines 
(for example, as we did from architecture and from anthropology). 
You will create systems that better take into account human beings, 
for whom our systems exist anyway. 

Many of my students ask about what I like to read, what has 
shaped how I think and helped me in my journey. The following 
are my recommendations. 

Alan recommends the following: 

• Grieve, B., The Blue Day Book: A Lesson in Cheering You Up, Kan 
sas City: Andrews McMeel Publishing, 2000. This is a fun and 
delightful book. Read it whenever you are feeling down (it's short). 

• Hill,  N.,  Think and Grow Rich,  New York: Ballantine Books,  
1960.  "Rich" doesn't only mean in money — it means in whatever  
form you want to be rich in. This book has had a profound impact on 
both my personal and business success. 

• Kundtz, D., Stopping: How to Be Still When You Have to Keep Going, 
Berkeley: Conari Press, 1998. As a recovering workaholic, this book  
is a beautiful reminder of how to slow down and enjoy life, but still get 
things done. 

• Mandino, O., The Greatest Salesman in the World, New York: Ban 
tam Press, 1968. I read and "practiced" this book a few years ago. It 
has helped me live my life the way I've always wanted to. If you read it,  
I strongly suggest doing what the scrolls tell Hafid to do— not just read 
about i t (you 'II know what I mean when you read the book). 

Beyond 
programming 

Alan's list 
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• Pilzer, P., Unlimited Wealth: The Theory and Practice of Economic 
Alchemy, Crown Publishers, 1990. This book presents both a new 
paradigm for resources and wealth, and how to take advantage of it. A 
must-read in the information age.  

• Remen, R., My Grandfather's Blessings: Stories of Strength, Refuge, 
and Belonging, New York: Riverhead Books, 2000. A lovely book to 
reflect on one's blessings. 

Jim's list Jim recommends the following: 

• Buzan, T., and Buzan, B., The Mind Map Book: How to Use Radiant 
Thinking to Maximize Your Brain's Untapped Potential, New York: 
Button Books, 1994. This has revolutionized how I teach, communi- 

• cate, think, and take notes. An incredibly powerful technique. I use this 
daily. 

• Cahill, T., How the Irish Saved Civilization, New York: Doubleday, 
1995. If you have any Irish blood in you, this will make you proud. 
Cannibals turned to the greatest force for civilization and rescue 
Europe. 

• Dawson, C., Religion and the Rise of Western Culture, New York: 
Doubleday, 1950. How religion shaped the development of Western 
civilization and kept at bay the "barbarianism that is always lurking 
just below the surface." Important insights into scientific thought. 

• Jensen, B., Simplicity: The New Competitive Advantage in a World of  
More, Better, Faster, Cambridge, Mass.: Perseus Books, 2000. A 
revolution in thought and knowledge management. Designing systems 
that are simpler for people to use, taking humans into account in our 
processes and technologies. 

• Lingenfelter, S., Transforming Culture, Grand Rapids: Baker Book 
House,  1998. A model for understanding cultures through social 
game theory.  
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Spradely, J. P., The Ethnographic Interview, New York: Harcourt 
Brace Jovanovich College Publishers, 1979. A must-read for any one 
who wants to become a better interviewer. The classic text used by all 
students of anthropology. 

Wiig, K., Knowledge Management Methods, Dallas: Schema Press, 
1995. A virtual encyclopedia of techniques for helping organizations 
exploit their knowledge resources more effectively. 
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Section 3: Design Patterns
Section Overview
In this section This section introduces design patterns: what they are and how to use them.

Four patterns pertinent to the CAD/CAM problem (Chapter 6) are described.
They are learned individually and then related to our earlier problem.  In
learning these patterns, we emphasize the object-oriented strategies espoused
by the Gang of Four in their seminal work: Design Patterns: Elements of
Reusable Object-oriented Software.

Chapter 8 is an introduction to design pattern is.  I introduce the concept of
design patterns, discuss their origins in architecture and how they apply in the
discipline of software design. Then, I discuss the motivations for studying
design patterns.

Chapter 9 describes the Façade pattern. I explain what it is, where it is used
and how it is implemented. Then I relate it to the CAD/CAM problem.

Chapter 10 describes the Object Adapter pattern. I explain what it is, where it
is used and how it is implemented. I compare the Object Adapter pattern and
the Façade pattern. Then, I relate the Object Adapter pattern to the
CAD/CAM problem.

Chapter 11 describes the Bridge pattern. The Bridge pattern is quite a bit
more complex than the previous patterns; it is also much more useful.  While
I could discuss these other patterns more conceptually, I go into great detail
with the Bridge pattern. Then, I relate the Bridge pattern to the CAD/CAM
problem.

Chapter 12 describes the Abstract Factory  pattern The Abstract Factory
pattern focuses on creating families of objects.  I describe this pattern and
how it is used and implemented. Then, I relate it to the CAD/CAM problem.

Objectives At the end of this section, the reader will understand what design patterns are,
why they are useful and will even know four specific patterns.  They will also
see how these patterns relate to our earlier CAD/CAM problem.  This
information, however, may not be enough to create a better design than the
over reliance on inheritance already seen.  However, the stage is set for using
patterns in a way different than most design pattern practitioners use them.
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Chapter 8: An Introduction to Design Patterns
Overview
In this chapter We introduce the concept of design patterns.  I discuss their origins in

architecture and how they apply in the discipline of software design. Finally, I
discuss the motivations for studying design patterns.

Design patterns
and object-
oriented design
reinforce each
other

Design patterns are part of the cutting edge of object-oriented technology.
Object-oriented analysis tools, books, and seminars are incorporating design
patterns. Study groups on design patterns abound. Object-oriented analysts
are expected to learn design patterns to improve their abilities. I have found
that the opposite is also true: learning design patterns greatly helped to
improve my basic understanding of object-oriented analysis and design.

Throughout the rest of the book, I will discuss not only design patterns, but
how they reveal and reinforce good object-oriented principles.  I hope to
improve both your understanding of these principles and illustrate why the
design patterns being discussed here represent good designs.

Give this a
chance

Perhaps some of this material may seem abstract or philosophical. But give it
a chance! This chapter lays the foundation for your understanding of design
patterns. Understanding the material here will speed up your ability to obtain
new patterns.

Some of this material is taken from Christopher Alexander’s Trilogy
(Alexander 1979, 1977, 1970)

Design Patterns Arose from Architecture and Anthropology
Is quality
objective?

Years ago, an architect named Christopher Alexander asked himself, “Is
quality objective?”  Is beauty truly in the eye of the beholder or would people
agree that some things are beautiful and some are not? Now, the particular
form of beauty that Alexander was interested in was one of architectural
quality: what makes us know when an architectural design is good? For
example, if a person was going to design an entrance-way for a house, how
would he or she know that the design was good?

Can we know good design? Is there an objective basis for such a judgment?

If there was not some sort of objective basis, we would not be able to make
judgments. What is regarded as good for someone might be bad for someone
else.

Now, this book is not a treatise in cultural anthropology, but that body of
work suggests that within a culture, individuals will agree to a large extent on
what is considered to be a good design, what is beautiful. Cultures make
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judgments on good design that transcend individual beliefs. I believe that
there are transcending patterns that serve as objective bases for judging
design. A major branch of cultural anthropology looks for such patterns to
describe the behaviors and values of a culture1.

How do we get
good quality
repeatedly?

If we accept that we can even say we have or do not have a good quality
design, how do we go about creating them?  Alexander asked himself,

“What is present in a good quality design that is not present in a poor
design?”

and

“What is present in a poor quality design that is not present in a good
quality design?”

These questions spring from Alexander’s belief that if quality in design is
objective, then we should be able to quantify what makes designs good and
what makes designs bad.

Look for the
commonalties

Alexander studied this problem by making many observations of buildings,
towns, streets and virtually every other aspect of living spaces that human
beings have built for themselves.  He discovered that, for a particular
architectural creation, good constructs had commonalties with each other.

…especially
commonality in
the features of
the problem to
be solved

Architectural structures differ from each other, even if they are of the same
type. Yet even though they are different, they can still be high quality.

For example, porches may appear different, may not have the same structure,
and still be considered high quality.  They might be solving different
problems for different houses. One porch may be a transition from the
walkway to the front door.  Another porch might be a place for shade on a hot
day.  Or two porches might solve a common problem (transition) in different
ways.

Alexander understood this. He knew that structures couldn’t be separated
from the problem they are trying to solve.  Therefore, in his quest to identify
and describe the consistency of quality in design, Alexander realized that he
had to look at structures that were trying to solve the same problem.

                                               
1 The anthropologist Ruth Benedict is a pioneer in pattern-based analysis of cultures.
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Figure 8-1. Structures may look different but still solve a common problem

This led to the
concept of a
pattern

Alexander discovered that by narrowing his focus in this way—looking at
structures that solve similar problems—he could discern similarities between
designs that were high quality.  He called these similarities, “patterns.”

He defined a pattern as “a solution to a problem in a context.”i

“Each pattern describes a problem which occurs over and over again in
our environment and then describes the core of the solution to that
problem, in such a way that you can use this solution a million times
over, without ever doing it the same way twice.”ii

An example
pattern: the
Courtyard

Let’s read some of Alexander’s work to illustrate this.  I will present an
excerpt from his The Timeless Way of Building, an excellent book which
presents the philosophy of patterns succinctly.

Alexander says… My comments…
In the same way, a courtyard which is properly
formed helps people come to life in it.

A pattern always, has a name and has a
purpose. Here, the pattern’s name is
“Courtyard” and its purpose is to help
people to come to life in it.

Consider the forces at work in a courtyard.  Most
fundamental of all, people seek some kind of private
outdoor space, where they can sit under the sky, see
the stars, enjoy the sun, perhaps plant flowers.  This
is obvious.

Although it might be obvious sometimes,
it is important to state explicitly the
problem being solved, which is the
reason for having the pattern in the first
place. This is what Alexander does here
for Courtyard..
He points out a difficulty with the
simplified solution which we may have
thought of

But there are more subtle forces too.  For instance,
when a courtyard is too tightly enclosed, has no view
out, people feel uncomfortable, and tend to stay
away … they need to see out into some larger and
more distant space. …and then gives us a way to solve the

problem that he has just pointed out.
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Or again, people are creatures of habit.  If they pass
in and out of the courtyard, every day, in the course
of their normal lives, the courtyard becomes
familiar, a natural place to go … and it is used.

But a courtyard with only one way in, a place you
only go when you “want” to go there, is an
unfamiliar place, tends to stay unused… people go
more often to places which are familiar.

Or again, there is a certain abruptness about
suddenly stepping out, from the inside, directly to
the outside … it is subtle, but enough to inhibit you.

Familiarity sometimes keeps us from
seeing the obvious. The value of a
pattern is that those with less experience
can take advantage of what others have
learned before them:

• both what must be included to have
a good design.

• and what must be avoided to keep
from a poor design..

If there is a transitional space—a porch or a veranda,
under cover, but open to the air—this is
psychologically half way between indoors and
outdoors, and makes it much easier, more simple, to
take each of the smaller steps that brings you out
into the courtyard…

A solution to a possibly overlooked
challenge to building a great courtyard

Alexander is telling us how to build a
great courtyard

When a courtyard has a view out to a larger space,
has crossing paths from different rooms, and has a
veranda or a porch, these forces can resolve
themselves. The view out makes it comfortable, the
crossing paths help generate a sense of habit there,
the porch makes it easier to go out more often …
and gradually the courtyard becomes a pleasant
customary place to be.

…and then tells us why it is great.

The four
components
required  of
every pattern
description

To review, Alexander says that a description of a pattern involves four items:
• The name of the pattern.
• The purpose of the pattern, the problem it solves.

• How we could accomplish this.
• The constraints and forces we have to consider in order to accomplish it.

Patterns exist
for almost any
design problem
and may be
combined to
solve complex
problems

Alexander postulated that patterns exist which solve virtually every
architectural problem that one will encounter.  He further postulated that
patterns could be used together to solve complex architectural problems.

How patterns work together will be discussed later in this book.  For now, I
want to focus on his claim that patterns are useful to solve specialized
problems.
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Moving from Architectural to Software Design Patterns
The Hillside
Group adapted
Alexander for
software

What does all of this architectural stuff have to do with us software
developers?

Well, in the early 90s some experienced developers happened upon
Alexander’s work in patterns. They wondered if what was true for
architectural patterns would also be true for software design.  2

• Were there problems in software that occur over and over again that could
be solved in somewhat the same manner?

• Was it possible to design software in terms of patterns, creating specific
solutions based on these patterns only after the patterns had been
identified?

The group felt the answer to both of these questions was “unequivocally yes”.
The next step was to identify several patterns and develop standards for
cataloging new ones.

The Gang of
Four did the
early work on
Design Patterns

Although many people were working on design patterns in the early 90s, the
book that had the greatest influence on this fledging community was Design
Patterns: Elements of Reusable Object-Oriented Software by Gamma, Helm,
Johnson, Vlissides [Gamma 1995]. In recognition of their important work,
these four authors are commonly and affectionately known as the “Gang of
Four.”

This book served several purposes.
• It defined what design patterns were within the area of software design.

• It described a structure within which to catalog and describe design
patterns.

• It cataloged 23 such patterns.
• It postulated object-oriented strategies and approaches based on these

design patterns.

It is important to realize that the patterns described in the book were not
created by the authors. Rather, the authors identified these patterns as already
existing within the software community, patterns that reflected what had been
learned about high quality designs for specific problems (note the similarity
to Alexander’s work).

Today, there are several different forms for describing design patterns. In
some circles, the Gang of Four’s structure is considered to be obsolete. Since

                                               
2 The ESPRIT consortium in Europe was doing similar work in the 1980’s.  Project 1098 and Project 5248
developed a pattern-based design methodology called Knowledge Analysis and Design Support (KADS). See
Cognitive Patterns: Problem-Solving Frameworks for Object Technology, Karen Gardner, et.al. Cambridge
University Press. 1998.
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this book is not a book about writing design patterns, I will not offer an
opinion on the best structure for describing patterns; however, the following
items need to be included in any description.

Item Description
Name All patterns have a unique name we use to identify them

with.
Intent The purpose of this pattern.
Problem The problem that the pattern is trying to solve.
Content The context in which this problem shows up.
Solution How the pattern provides a solution to this problem in

the context in which it shows up.
Consequences/
Forces

The consequences of using this pattern.  Investigates the
forces at play in the pattern.

Implementation How this pattern can be implemented. Note:
Implementations are just concrete manifestations of the
pattern and should not be construed as the pattern itself.

Consequences / Forces.  The term “consequences” is used in design patterns
and is often misunderstood.  In everyday usage, “consequences” usually
carries a negative connotation. (you never hear someone say, “I won the
lottery! As a consequence, I now do not have to go to work.!”) Within the
design pattern community, on the other hand, “consequences” simply means
“cause and effect.” That is, if you implement this pattern in such-and-such a
way, this is how it affects the forces present.

Why Study Design Patterns
Design patterns
help with reuse
and
communication

Now that you have an idea about what design patterns are, you may still be
wondering “why study them?”  There are several reasons that are obvious and
then some that are not so obvious.

The most commonly stated reasons for studying patterns are to:
• Reuse solutions. By reusing already established designs, we get a head

start on our problems and avoid gotchas. I get the benefit of learning from
the experience of others. I do not have to reinvent solutions for commonly
recurring problems.

• Establish common terminology.  Communication and teamwork require a
common base of vocabulary and a common viewpoint of the problem.
Design patterns provide a common point of reference during the analysis
and design phase of a project.

Design patterns
give a higher
perspective on
analysis and
objects

However, there is a third reason to study design patterns:

To give you a higher level perspective on the problem and on the process
of design and object-orientation. To free you from the tyranny of dealing
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with the details too early.

By the end of this book, I hope you see that this is the greatest reason to study
design patterns. It will shift your mindset and make you a more powerful
analyst.

To illustrate this advantage, I want to relate a conversation between two
carpenters about how to build the drawers for some cabinets.iii

Example of the
tyranny of
details:
Carpenters
making a joint

To illustrate this advantage, consider a conversation between two carpenters
about how to build the drawers for some cabinets.iv

Carpenter 1: How do you think we should build these drawers?
Carpenter 2: Well, I think we should make the joint by cutting straight
down into the wood, and then cutting back up 45 degrees, and then going
straight back down, and then backup the other way 45 degrees, and then
going straight back down and then…

Now, figure out what they are talking about doing.
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…The details
can  confuse the
solution

Isn’t that a confusing description? What is Carpenter 2 prescribing? The
details certainly get in the way! Let’s try to draw out his description.

Carpenter Two says… which looks like…
“Well, I think we should make the joint by
cutting straight down into the wood, then
cutting back up 45 degrees …”
“… then straight back down, then backup the
other way 45 degrees, then straight back down
and then ….”

“until you end up with…a dove tail joint. That
is what I was describing!”

…( this sounds
like so many
code reviews:
details, details,
details)

Doesn’t this sound like code reviews you have heard? The one where the
programmer describes the code as

 “… And then, I use a WHILE LOOP here to do … followed by a series
of IF statements to do … and here I use a SWITCH to handle …”

You get a description of the details of the code, but you have no idea what the
program is doing and why it is doing it.!

…but carpenters
do not really
talk at that level
of detail

Of course, no self-respecting carpenters would talk like this.  What would
really happen is something like:

Carpenter 1: Should we use a miter joint or a dovetail joint?



Net  Objectives Copyright © 2000, DRAFT -- 28 February, 2000 Page 8-9

Already we see a qualitative difference.  The carpenters are discussing
differences in the quality of solutions to a problem; their discussion is at a
higher level, a more abstract level. They avoid getting bogged down in the
mere details of a particular solution.

When the carpenter speaks of a miter joint, he or she has the following
characteristics of the solution in mind.

• It is a simpler solution. A miter joint is a simple joint to make.  You cut
the edges of the joining pieces at 45 degrees, abut them, and then nail or
glue them together (see Figure 8-2).

• However, it is also a weaker joint.

When the carpenter speaks of a dovetail joint (which we saw above), he or
she has other characteristics of the solution in mind. These characteristics
may not be obvious to a layman, but would clearly be understood by any
carpenter.
• It is a more evolved solution. It is more involved to make a dovetail joint.

Thus, it is more expensive.
• It is impervious to temperature and humidity. As these change, the wood

expands or contracts.  However, the dovetail joint will remain solid.
• It does not depend on glue or other fastening systems. In fact, dovetail

joints do not depend even depend upon glue to work.
• It is a more aesthetically pleasing joint. Beautiful to look at when made

well.

In other words, the dovetail joint is a strong, dependable, beautiful joint that is
hard (expensive) to make.

Figure 8-2. A miter joint

…there is a
meta-level
conversation
going on.

So, when Carpenter 1 asked,

“Should we use a miter joint or a dovetail joint?”

the real question that was being asked was,

“Should we use a joint that is expensive to make but is both beautiful and
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lasts a long time or should we just make a quick and dirty joint that will
last at least as long until the check clears?”

We might say the carpenters’ discussion really occurs at several levels: the
surface level of their words and the real conversation that is at a higher level
(a “meta-level”) that is hidden but much richer. This higher level is the level
of “carpenter patterns” and reflects the real design issues for the carpenters.

• Carpenter 1 wants to decide on which joint to use based on costs and
quality of the joint.

• Carpenter 2 simply obscures the real issues by discussing the details of
the implementations of the joints.

Who is more efficient? Who would you rather work with?

Patterns help us
see the forest
for the trees

This is one way I mean when I say that patterns can help raise our level of
thinking.  We will learn later in the book that when we raise our level of
thinking like this, new design methods become available.  This is where the
real power of patterns lies.

Other Advantages to Studying Design Patterns
Improve team
communications
and individual
learning

My experience with development groups working with design patterns is that
design patterns helped both individual learning and team development.  This
occurred because the more junior team members saw that the senior
developers who knew design patterns had something of value and they
wanted it.  This provided motivation for them to learn some of these powerful
concepts.

Improved
modifiability of
code

Design patterns also provide for built in modifiability of software.  The
reason for this is that they are time tested solutions.  They therefore have
evolved into structures that can handle change more readily than what often
first comes to mind as a solution.

Design patterns
illustrate basic
object-oriented
principles

Design patterns, when they are taught properly, can be used to greatly
increase the understanding of basic object-oriented design principles.  I have
seen this countless times in the introductory object-oriented courses I teach
where we start using design patterns on the first day.  By the end of the three
day course, although we’ve been mostly talking about patterns, the concepts
of encapsulation, polymorphism and inheritance – which were just introduced
to many of the participants – feel like they are old friends.

Adoption of
improved
strategies – even
when patterns
aren’t present

In Design Patterns: Elements of Reusable Object-Oriented Software, the
Gang of Four suggest a few strategies for creating good object-oriented
designs.  In particular, they suggest the following:
• find what varies and encapsulate it

• favor composition over inheritance
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These strategies occur in most of the design patterns described.  Even if you
do not learn a lot of design patterns, studying a few should enable you to learn
why these strategies are useful.  With that understanding comes the ability to
apply them to your own design problems even if you do not use design
patterns directly.

Learn
alternatives to
large
inheritance
hierarchies

Another advantage is that design patterns allow you or your team to create
designs for complex problems that do not require large inheritance
hierarchies.  Again, even if design patterns are not used directly, avoiding
large inheritance hierarchies will result in improved designs.

Summary
We have looked at what design patterns are. Christopher Alexander says
“patterns are solutions to a problem in a context.”  They are more than a kind
of template to solve one’s problems.  They are a way of describing our
motivations by including both what we want to have happen along with the
problems that are plaguing us.

We looked at why we should study design patterns.  Studying design patterns
helps to:

• Reuse existing, high quality solutions to commonly recurring problems.
• Establish common terminology to improve communications within teams.

• Shift our level of thinking to a higher perspective.
• Improve individual learning and team learning.
• Improve the modifiability of code.

• Facilitate adoption of improved design alternatives, even when patterns
are not used explicitly.

• Discover alternatives to large inheritance hierarchies.

                                               
i A Pattern Language, Christopher Alexander
ii ibid.
iii This section is inspired by a talk given by Ralph Johnson and adapted by the authors.
iv This section is inspired by a talk given by Ralph Johnson and adapted by the authors.
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CREATIONAL PATTERNS 
Pattern  Notes on the patterns 

 
Abstract 
factory 

Indicators in analysis: Different cases exist that require different implementations of common rules.   
 
Indicators in design: Many polymorphic structures exist that are used in pre-defined combinations.  These 
combinations are defined by there being particular cases to implement or different needs of client objects. 
 
Indication pattern is not being used when it should be: A variable is used in several places to determine which object 
to instantiate. 
 
Relationships involved: The Abstract Factory object is responsible for coordinating the family of objects that the client 
object needs.  The client object has the responsibility for using the objects. 
 

Builder Indicators in analysis: Several different kinds of complex objects can be built with the same overall build process, but 
where there is variation in the individual construction steps.  
 
Indicators in design: You want to hide the implementation of instantiating complex object, or you want to bring 
together all of the rules for instantiating complex objects. 
 
 

Factory 
Method 

Indicators in analysis: There are different commonalities whose implementations are coordinated with each other. 
 
Indicators in design: A class needs to instantiate a derivation of another class, but doesn’t know which one. Factory 
method allows a derived class to make this decision.  
 
Field notes: The Factory method is often used with frameworks.  It is also used when the different implementations of 
one class hierarchy requires a specific implementation of another class hierarchy. 

Prototype Indicators in analysis: There are prototypical instances of things. 
Indicators in design: When objects being instantiated need to look like a copy of a particular object.  Allows for  
dynamically specifying what our instantiated objects look like.  
 

Singleton Indicators in analysis: There exists only one entity of something in the problem domain that is used by several 
different things. 
Indicators in design: Several different client objects need to refer to the same thing and we want to make sure we don’t 
have more than one of them.  You only want to have one of an object but there is no higher object controlling the 
instantiation of the object in questions.  
Field notes: You can get much the same function as Singletons with static methods.  Therefore, the Singleton 
should be used only when statics don’t work well.  This occurs when you need to control when the class is 
instantiated (that is, static members are allocated).  Another case is if you want to use polymorphism on the 
Singleton. 
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CREATIONAL PATTERNS 
How it is implemented 
 

Class Diagram/Implementation Pattern  

Define an abstract class that specifies which 
objects are to be made.  Then implement one 
concrete class for each family.  Tables or files can 
also be used to essentially accomplish the same 
thing.  Names of the desired classes can be kept in 
a database and then switches or run-time type 
identification (RTTI) can be used to instantiate the 
correct objects. 

 

WidgetFactory

+ createWindow()
+ createScrollBar()

MotifFactory

+ createWindow()
+ createScrollBar()

PMFactory

+ createWindow()
+ createScrollBar()

Window

PMWindow MotifWindow

ScrollBar

PMScrollBar MotifScrollBar

Client

 

Abstract 
factory 

Create a factory object that contains several 
methods.  Each method is called separately and 
performs a necessary step in the building process.  
When the client object is through, it calls a method 
to get the constructed object returned to it.  Derive 
classes from the builder object to specialize steps. 

Director

+ construct()
Builder

+ buildStep1()
+ buildStep2()
+ getObject()

ConcreteBuilder1

+ buildStep1()
+ buildStep2()
+ getObject()

ConcreteBuilder2

+ buildStep1()
+ buildStep2()
+ getObject()

builder->buildStep1()
builder->buildStep2()
getObject()

 

Builder 

Have a method in the abstract class that is abstract 
(pure virtual).  The abstract class’s code will refer 
to this method when it needs to instantiate a 
contained object.  Note, however, that it doesn’t 
know which one it needs.  That is why all classes 
derived from this one must implement this method 
with the appropriate new command to instantiate 
the proper object. 
 
 
 
 
 

Note: in this example createDocument is called a 
factory method.  Application is not a factory object.

Document Application

+ createDocument()

MyDoc MyAp

+ createDocument() return new MyDoc

must be 
abstract

 

Factory 
Method 

Set up concrete classes of the class needing to be 
cloned.  Each concrete class will construct itself to 
the appropriate value (optionally based on input 
parameters).  When a new object is needed, clone 
an instantiation of this prototypical object. 

Client

Prototype

+ clone()

ConcretePrototype1

+ clone()

ConcretePrototype2

+ clone()

return copy 
of self

return copy 
of self

use clone to instantiate

 

Prototype 

Add a static member to the class that refers to the 
first instantiation of this object (initially it is null).  
Then, add a static method that instantiates this 
class if this member is null (and sets this 
member’s value) and then returns the value of this 
member.  Finally, set the constructor to  protected 
or private so no one can directly instantiate this 
class and bypass this mechanism. 

PSEUDO CODE  
(if C++, _instance should be pointer) 
 
class Singleton { 
   public static Singleton Instance(); 
   protected Singleton(); 
   private static _instance= null; 
 
   Singleton Instance () { 
      if _instance== null)  
         _instance= new Singleton; 
      return _instance 
   } 
} 

Singleton 
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STRUCTURAL PATTERNS 
Pattern  Notes on the patterns 

 
Adapter Indicators in analysis: Normally don’t worry about interfaces here, so don’t usually think about it.  However, if you 

know some existing code is going to be incorporated into your system, it is likely that an adapter will be needed since 
it is unlikely this pre-existing code will have the correct interface. 
Indicator in design: Something has the right stuff but the wrong interface.  Typically used when you have to make 
something that’s a derivative of an abstract class we are defining or already have. 
Field notes: The adapter pattern allows you to defer concern about what the interfaces of your pre-existing objects 
look like since you can easily change them. 
 

Bridge Indicators in analysis: There are a set of related objects using another set of objects.  This second set represents an 
implementation of the first set. 
Indicators in design:  
There is a set of derivations that use a common set of objects to get implemented.   
Indication pattern is not being used when it should be: There is a class hierarchy that has redundancy in it, in 
particular, in the way these objects use another set of object.  Also, if a new case is added to this hierarchy or to the 
classes being used, that will result in multiple classes being added. 
Relationships involved: The using classes (the GoF’s “Abstraction”) use the used classes (the GoF’s 
“Implementation”) in different ways but don’t want to know which implementor is present. 
Field notes: 
Although the implementer to use can vary from instance to instance, typically only one implementer is used for the life 
of the using object.  This means we usually select the implementer at construction time, either passing it into the 
constructor or having the constructor decide which implementer should be used. 

Composite Indicators in analysis: There are single things and groups of things that you want to treat the same way.  The groups 
of things are made up of other groups and of single things (i.e., they are hierarchically related). 
Indicators in design: Some objects are comprised of collections of other objects, yet we want to handle all of these 
objects in the same way. 
Indication pattern is not being used when it should be: The code is distinguishing between whether a single object 
is present or a collection of objects is present. 
 
 
 

Façade Indicators in analysis: A complex system will be used which will likely not be utilized to its full extent. 
Indicators in design: Reference to an existing system is made in similar ways.  That is, you see combinations of calls 
to a system repeated over and over again. 
Indication pattern is not being used when it should be: Many people on a team have to learn a new system although 
each person is only using a small aspect of it. 
Field notes: Not usually used for encapsulating variation, but different facades derived from the same abstract class 
can encapsulate different sub-systems.  This is called an encapsulating façade. 

Proxy – 
virtual 

Indicators in analysis and design: Performance issues (speed or memory) can be foreseen because of the cost of 
having objects around before they are actually used. 
Indication pattern is not being used when it should be: Objects are being instantiated before they are actually used 
and the extent of this is causing performance problems. 
Field notes:  This pattern often comes up to solve scalability issues or performance issues that arise after a 
system is working. 
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STRUCTURAL PATTERNS 
How it is implemented 
 

Class Diagram Pattern  

Contain the existing class in another class.  
Have the containing class match the required 
interface and call the contained class’s 
methods 

ExistingClass

+ itsOperation()

Client
TargetAbstraction

+ operation()

operation: 
  existingclass->itsOperation

Adapter

+ operation()

 

Adapter 

Encapsulate the implementations in an abstract 
class and contain a handle to it in the base 
class of the abstraction being implemented. In 
Java can also use interfaces instead of an 
abstract class for the implementation. 

RefinedAbstraction
Imp_A

+ opImp()

Imp_B

+ opImp()

Implementation

+ opImp()

Abstraction

+ operation()

imp->opImp()

 

Bridge 

Set up an abstract class that represents all 
elements in the hierarchy.  Define at least one 
derived class that represents the individual 
components.  Also, define at least one other 
class that represents the composite elements 
(i.e., those elements that contain multiple 
components).  In the abstract class, define 
abstract methods that the client objects will 
use.  Finally, implement these for each of the   
derived classes. 

Client

Leaf

+ operation()

Component

+ operation()

Composite

+ operation()

Composite 

Define a new class (or classes) that has the 
required interface.  Have this new class use the 
existing system. 

ComplexSysA

ComplexSysB

Facade

provides simpler 
interface

Client

 

Façade 

The Client refers to the proxy object instead of 
an object from the original class.  The proxy 
object remembers the information required to 
instantiate the original class but defers its  
instantiation. When the object from the 
original class is actually needed, the proxy 
object instantiates it and then makes the 
necessary request to it. 

Client Abstract

+ operation()

Proxy_Virtual

+ operation()

RealSubject

+ operation()

to proxy

realsubject->operation()

 

Proxy - 
virtual 
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BEHAVIORAL PATTERNS 
Pattern  Notes on the patterns 

 
Decorator Indicators in analysis: There is some action that is always done, there are other actions that may need to be done. 

Indicators in design: 1) There is a collection of actions; 2) These actions can be added in any combination to an 
existing function; 3) You don’t want to change the code that is using the decorated function. 
Indication pattern is not being used when it should be: There are switches that determine if some optional function 
should be called before some existing function. 
Variation Encapsulated: The functionality to be added before or after an existing function. 
Field notes: This pattern is used extensively in the JFC for file handling. 
 
 

Proxy – 
adding 
function 

Indicators in design: We need some particular action to occur before some object we already have is called. 
Indication pattern is not being used when it should be: We precede a function with the same code every time it is 
used.  Or, we add a switch to an object so it sometimes does some pre-processing and sometimes doesn’t. 
Field notes: Proxies are useful to encapsulate a special function that is sometimes used prior to calling an existing 
object. 
 
 
 
 
 

State  Indicators in analysis and design: We have behaviors that change, depending upon the state we are in. 
Indication pattern is not being used when it should be: The code keeps track of the mode the system is in.  Each 
time an event is handled, a switch determines which code to execute (based on the mode the system is in).  The rules 
for transitioning between the patterns may also be complex. 
Field notes: 
We define our classes by looking at the following questions: 

1. What are our states? 
2. What are the events we must handle? 
3. How do we handle the transitions between states? 

Strategy Indicators in analysis: There are different implementations of a business rule. 
Indicators in design: You have a place where a business rule (or algorithm) changes.  
Indication pattern is not being used when it should be: A switch is present that determines which business-rule to 
use.  A class hierarchy is present where the main difference between the derivations is an overridden method. 
Relationships involved: An object that uses different business rules that do conceptually the same thing (Context-
Algorithm relationship).  A client object that gives another object the rule to use (Client-Context relationship). 
Variation encapsulated: The different implementations of the business rules. 
Field notes: The essence of this pattern is that the Context does not know which rule it is using.  Either the Client 
object gives the Context the Algorithm to use or the Context asks a factory (or configuration type) object for the 
correct algorithm object to use. 

Template Indicators in analysis: There are different procedures that are followed that are essentially the same, except that each 
step does things differently. 
Indicators in design: You have a consistent set of steps to follow but individual steps may have different 
implementations. 
Indication pattern is not being used when it should be: Different classes implement essentially the same process 
flow. 
Field notes: The template pattern is most useful when it is used to abstract out a common flow between two similar 
processes. 
 
 

Visitor 
 

Indicators in analysis and design: You have a reasonably stable set of classes for which you need to add new 
functions.  You can add tasks to be performed on this set without having to change it. 
Variation encapsulated: A set of tasks to run against a set of derivations.  
Field notes: This is a useful pattern for writing sets of tests that you can run when needed. 

NOTE:  The Decorator and Proxy patterns are classified as Structural patterns by the GoF. Since they both  add functionality, however, instead of simply 
combining existing pieces, I believe they are more behavioral in nature. I have also reclassified several Behavioral patterns as Decoupling patterns (a new 
classification of mine, seen later in this section).  That is because those patterns moved are more about decoupling than about managing new behavior. 
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BEHAVIORAL PATTERNS 
How it is implemented 
 

Class Diagram Pattern  

Set up an abstract class that represents both the original 
class and the new functions to be added.  Have each 
contain a handle to an object of this type (in reality, of a 
derived type).  In our decorators, perform the additional 
function and then call the contained object’s operation 
method.  Optionally, call the contained object’s 
operation method first, then do your own special 
function.  addeBehavior()

Decorator::operation()

ConcreteComponent

+ operation()

ConcreteDec1

+ operation()

ConcreteDec2

+ operation()

Decorator

+ operation()

Component

+ operation()

1

1

1

1

component.operation()

 

Decorator 

The Client refers to the proxy object instead of an object 
from the original class.  The proxy object creates the 
RealSubject when it is created.  Requests come to the 
Proxy, which does its initial function (possibly), passes 
the request (possibly) to the RealSubject and then does 
(possibly) some post processing.   Proxy

+ operation()

Client Abstract

+ op erat ion ()

RealSubject

+ operation()

realsubject->operation()

to proxy

 

Proxy – 
adding 
function 

Define an abstract class that represents the state of an 
application.  Derive a class for each possible state.  Each 
of these classes can now operate independently of each 
other.  State transitions can be handled either in the 
contextual class or in the states themselves.  Information 
that is persistent across states should be stored in the 
context.  States likely will need to have access to this 
(through get routines, of course). 

State_Mode1

+ handle()

State_Mode2

+ handle()

state->handle()

Context

+ request()

State

+ handle()

 

State  

Have the class that uses the algorithm contain an abstract 
class that has an abstract method specifying how to call 
the algorithm.  Each derived class implements the 
algorithm as needed. 

Strategy_A

+ algorithm()

Strategy_B

+ algorithm()

Strategy

+ algorithm()

Context

+ request()

 

Strategy 

Create an abstract class that implements a procedure 
using abstract methods.  These abstract methods must be 
implemented in derived classes to actually perform each 
step of the procedure.  If the steps vary independently, 
each step may be implemented with a strategy pattern. 

templateMethod:
   ...
   operation1()
   ...
   operation2()
   ...

Client
AbstractTemplate

+ templateMethod()
+ operation1()
+ operation2()

ComcreteClass

+ operation1()
+ operation2()

 

Template 

Make an abstract class that represents the tasks to be 
performed.  Add a method to this class for each concrete 
class you started with (your original entities).  Add a 
method to the classes that you are working on to call the 
appropriate method in this task class, giving a reference 
to itself to this method. 

ClientAbstractTask

+ visitElTypeA()
+ visitElTypeB()

TaskA

+ visitElTypeA(typeA)
+ visitElTypeB(typeB)

TaskB

+ visitElTypeA(typeA)
+ visitElTypeB(typeB)

ElementTypeA

+ accept(task)

ElementTypeB

+ accept(task)

Structure

Element

+ accept(task)

accept: 
  task->visitTypeA(this)

accept: 
  task->visitTypeB(this)

 

Visitor 
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DECOUPLING PATTERNS 
Pattern  Notes on the patterns 

 
Chain of 
responsi-
bility 

Indicators in analysis: We have the several actions that may be done by different things. 
Indicators in design: We have several potential candidates to do a function.  However, we don’t want the client object 
to know which of these objects will actually do it. 
Field notes: This pattern can be used to chain potential candidates to perform an action together.  A variation of Chain 
of Responsibility is to not stop when one object performs its function but to allow each object to do its action. 
 

Iterator Indicators in analysis and design: We have a collection of things but aren’t clear what the right type of collection to 
use is. 
You want to hide the structure of a collection.  Alternatively, you need to have variations in the way a collection is 
traversed.  
Indication pattern is not being used when it should be: Changing the underlying structure of a collection (say from 
a vector to a composite) will affect the way the collection is iterated over. 
Variations encapsulated: Type of collection used.  
Field notes: The Iterator pattern enables us to defer a decision on which type of collection structure to use. 
 

Mediator Indicators in analysis and design: Many objects need to communicate with many other objects yet this 
communication cannot be handled with the observer pattern. 
Indication pattern is not being used when it should be: The system is tightly coupled due to inter-object 
communication requirements. 
Field notes: When several objects are highly coupled in the way they interact, yet this set of rules can be encapsulated 
in one place. 

Memento Indicators in analysis and design: The state of an object needs to be remembered so we can go back to it (e.g., undo 
an action). 
Indication pattern is not being used when it should be: The internal state of an object is exposed to another object.  
Or, copies of an object are being made to remember the object’s state, yet this object contains much information that is 
not state dependent.  This means the object is larger than it needs to be or contains an open connection that doesn’t 
need to be remembered. 
Field notes: This pattern is useful only when making copies of the object whose state is being remembered would be 
inefficient. 
 

Observer Indicators in analysis and design: Different things (objects) that need to know when an event has occurred.  This list 
of objects may vary from time to time or from case to case. 
Indication pattern is not being used when it should be: When a new object needs to be notified of an event 
occurring the programmer has to change the object that detects the event. 
Variation encapsulated: The list of objects that need to know about an event occurring. 
Field notes: This pattern is used extensively in the JFC for event handling and is supported with the Observable class 
and Observer interface. 
 
 

Proxy – 
access-
ability 

Indicators in analysis and design: Are any of the things we work with remote (i.e., on other machines)? An existing 
object needs to use an object on another machine and doesn’t want to have to worry about making the connection (or 
even know about the remote connection). 
Indication pattern is not being used when it should be: The use of an object and the set-up of the connection to the 
object are found together in more than one place.   
Field notes: The Proxy is a useful pattern to use when it is possible a remote connection will be needed in 
the future.  In this case, only the Proxy object need be changed  - not the object actually being used. 
 



Design Pattern Matrix 

copyright © 2002 Net Objectives             9                 

 

DECOUPLING PATTERNS 
How it is implemented 
 

Class Diagram Pattern  

Define an abstract class that represents possible handlers of a 
function.  This class contains a reference to at most one other 
object derived from this type. Define an abstract method that 
the client will call.  Each derived class must implement this 
method by either performing the requested operation (in its 
own particular way) or by handing it off to the Handler it refers 
to.  Note: it may be that the job is never handled.  You can 
implement a default method in the abstract class that is called 
when you reach the end of the chain. 

Client

Handler_A

+ handleRequest()

Handler_B

+ handleRequest()

Handler

+ handleRequest()

 

Chain of 
responsi-
bility 

Define abstract classes for both collections and iterators.  Have 
each derived collection include a method which instantiates the 
appropriate iterator.  The iterator must be able to request the 
required information from the collection in order to traverse it 
appropriately. 

Client
Collection

+ createIterator()
+ append()
+ remove()

Iterator

+ first()
+ next()
+ currentItem()

List

Vector

IteratorList

IteratorVector

 

Iterator 

Define a central class that acts as a message routing service to 
all other classes. 

aMediator

aColleague

aColleague

aColleague

aColleague

 

Mediator 

Define a new class that can remember the internal state of 
another object.  The Caretaker controls when to create these, 
but the Originator will actually use them when it restores its 
state. 

Caretaker

Originator

+ setMemento(m : Memento)
+ createMemento()

Memento

+ getState()

Originator creates memento and can later
ask it for information about an earlier state.

 

Memento 

Have objects (Observers) that want to know when an event 
happens, attach themselves to another object (Subject) that is 
actually looking for it to occur. When the event occurs, the 
subject tells the observers that it occurred.  The Adapter 
pattern is sometimes needed to be able to implement the 
Observer interface for all the Observer type objects. 

notify: 
  for all observers:
    call update()

ObserverA

+ update()

ObserverB

+ update()

Subject

+ attach()
+ detach()
+ notify()

Observer

+ update()
attach/detach

Use adapters if observers 
have different interfaces

Observer 

The Proxy pattern has a new object (the Proxy) stand in place 
of another, already existing object (the Real Subject). The 
proxy encapsulates any rules required for access to the real 
subject.  The proxy object and the real subject object must 
have the same interface so that the Client does not need to 
know a proxy is being used.  Requests made by the Client to 
the proxy are passed through to the Real Subject with the 
proxy doing any necessary processing to make the remote 
connection. 

Client Abstract

+ operation()

RealSubject

+ operation()

realsubject->operation()

to proxy

Proxy_Remote

+ operation()

 

Proxy – 
access-
ability 
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MODEL VIEW CONTROLLER and ANALYSIS MATRIX 
Model-
View-
Controller 

View

- myModel
- myCont roller

+ initial ize(Model)
+ makeController()
+ activate()
+ display()
+ update ()

Mo del

- CoreData
- SetOfObservers

+ attach(Observer)
+ detach(Observer)
+ notify()
+ getData()

Observer

+ update()

Controller

- myModel
- myView

+ initial ize(Model, View)
+ handleEvent()
+ update()

attachget data

subject

Observer

ConcreteObservers

there is no concrete subject in 
this exam ple

attach

service

display

The Model-View-Controller (MVC) is primarily used when building GUIs.  However, it can be used 
anytime you have an interactive type system.  It is used to de-couple your data, your presentation of the 
data and the logic for handling the events from each other.  

 
Use the Analysis matrix to collect variation between the different cases you have to deal with.  Do not try 
to make designs from it while you are collecting it.  However, the consistencies and inconsistencies 
between the cases will give you clues.  Remember, we will implement the rows as Strategies, Proxies, 
Decorators, Bridges, etc.  We will implement the columns with the Abstract Factory. 

  Case 1 Case 2 Case 3 Case 4 
one thing that 
is varying 
 

    

another thing 
that varies 

 
 
 

   

still another 
thing that 
varies 

 
 
 

   

… … 

 

   

These are the concrete implementations for the ways to whatever is 
varying that is listed on the left. 

These are the concrete implementations for the ways to whatever is 
varying that is listed on the left. 

These are the concrete implementations for the ways to whatever is 
varying that is listed on the left. 

 

The 
Analysis 
Matrix 

 
 Case 1 Case 2 Case 3 Case 4 

one thing that is 
varying 

    

another thing that 
varies 

    

still another thing 
that varies 
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THINGS TO LOOK FOR 
 

Guide to finding patterns in the problem domain 
 
Is there variation of a business rule or an implementation? 
Do we need to add some function? 
 
 Strategy –  do we have varying rules? 
 Bridge –   do we have multiple implementations? 
 Proxy –   do we need to always add some new functionality to something that already exists? 
 Decorator –  do we have additional functionality we may need to apply, but what we add varies? 
 Visitor –   do we have new tasks that we will need to apply to our existing classes? 
 
Are you concerned with interfaces, either changing, simplifying or handling disparate type objects in the same way? 
 
 Adapter –   do we have the right stuff but the wrong interface?  (used to fit classes into patterns as well) 
 Composite –  do we have units and groups and want to treat them the same way 
 Façade –   do we want to simplify our interfaces? 
 Proxy –   do we want to incorporate a rule to access something without affecting any other class? 
  
Are we trying to decouple things? 
 
 Observer –  do things need to know about events that have occurred? 
 Chain of Responsibility – do we have different objects that can do the job but we don’t want the client object know 
    who is actually going to do it? 
 Iterator –   do we want to separate the collection from the client that is using it so we don’t have to worry 
    about having the right collection implementation? 
 Mediator –  do we have a lot of coupling in who must talk to who? 
 State –   do we have a system with lots of states where keeping track of code for the different states is difficult? 
 
Are we trying to make things? 
 
 Abstract Factory –  do we need to create families (or sets) of objects? 
 Builder -    do we need to create our objects with several steps? 
 Factory Method –  do we need to have derived classes figure out what to instantiate?  
 
 
 
Remember the relationship between commonality/variability analysis, the conceptual, specification, implementation 
perspectives and how these are implemented in object-oriented languages. 
 

Commonality
analysis

Variability
analysis

Conceptual
perspective

Specification
perspective

Implementation
perspective

Abstract
class

Operations

by looking at what
these objects must do
(conceptual perspective)
we determine how to
call them (specification
perspective)

When implementing these classes, ensure that
the API provides sufficient information to

enable  proper implementation and decoupling

Concrete
class

Operations

Concrete
class

Operations
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A Better Way to Do Staff Supplementation 
 

Our primary consultant, Alan Shalloway, is available for part-time consulting.  Because he can provide mentoring to other team members 
as well as perform development duties, his part-time contribution can impact a team as much as most full-time contractors.  On long-term 
contracts, he can also teach any of Net Objectives’ courses informally over the term of the contract at contracting rates. This both lowers 
your overall cost and increases knowledge transfer. 
 

 

Quality Training 
 

Object-Oriented Analysis and Design 
 Design Patterns for Beginners and Experts 
  Java and C++: making use of the OO Paradigm 
   Extreme Programming, Agile Development 
    XML 

 
 

On-Site Courses 
Available! 

_______________________________________________________________________________________________________________________________________________________________________________________________________________ 

 

"If I were tasked with bringing in 
an outside design course, Net  

Objectives’ would be on the top of 
my list" - John Terrell, Microsoft  

 

�“Two things in life are certain: death and taxes” – Ben Franklin 
 

“In the information age, three  things in life are certain – death, 
taxes, and  requirements will change” – Alan Shalloway 

 

 

Pattern Oriented Design: OO at Either an Advanced or Introductory Level 
 

This is our premier course.  We have developed a practical, easy to understand way to take advantage of the latest advances in object-
oriented technology.  This course is offered in both two and three day versions.  The two day version assumes participants already 
understand basic object-oriented concepts.  The three day version provides an introduction to object-oriented design before going into 
pattern-oriented design. 
 

Pattern Oriented Design contrasted with Object-Oriented Design 
Pattern oriented design is a powerful method for creating application designs that can accommodate changing requirements more robustly 
than standard methods.  It is based on the principles espoused by Christopher Alexander, the ‘father of patterns’. It transcends older design 
techniques that result in inflexible, difficult to maintain, inheritance hierarchies. Additionally, design patterns are taught in a way to 
illustrate the underlying principles on which they are based – further improving your design methods. 

 

Object-Oriented Analysis for Developers 
 

This two day course centers on use-cases and CRC (class-responsibility-collaboration) cards.  We have updated these technologies to 
include using design patterns in the areas of analysis where appropriate.  The course also includes looking at communication problems 
between developers and clients.  By improving these communications, we can improve our requirements. 

 

Object-Oriented Analysis for Project Managers 
 

This one day course centers on use-cases and project planning.  It focuses on the role of the Project Manager in a software development 
project.  How to gather requirements, track them and ultimately schedule their development is covered along with risk mitigation. 

 

A Word About Our OOA & OOD Courses 
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w  

Web site, companion (for this book), 
313-314 welcome letter, 

e-tailing case study, 
265-266 

WelcomeLetter class, 265-266 
wrappers, 104 wrapping, 101, 
104, 106 

X 

XP, 318 
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